精英家教网 > 高中数学 > 题目详情
已知顶点为原点O,焦点在x轴上的抛物线,其内接△ABC的重心是焦点F,若直线BC的方程为4x+y-20=0.
(1)求抛物线方程;
(2)轴上是否存在定点M,使过M的动直线与抛物线交于P,Q两点,满足∠POQ=90°?证明你的结论.
(1)设抛物线的方程为y2=4px,则其焦点为(p,0)
与直线方程4x+y-20=0联立,有:(-4x+20)2=4px
∴4x2-(p+40)x+100=0,且y=-4x+20
该方程的解为B,C两点的坐标(x2,y2),(x3,y3
x2+x3=
p+40
4
(1)
y2+y3=-4(x2+x3)+40=-p (2)
设A(x1,y1
∵A在抛物线上
∴y12=4px1(3)
△ABC重心坐标为:(
x1+x2+x3
3
y1+y2+y3
3

∵重心为抛物线焦点
x1+x2+x3
3
=p,
y1+y2+y3
3
=0
将(1),(2)代入,得:
x1+
p+40
4
=3p,y1-p=0
与(3)联立,三个方程,x1,y1,p三个未知数,可解
解得:p=4
故抛物线的方程为y2=16x.
(2)设点M(a,b)  P(x4,y4)  Q(x5,y5
①当直线L的斜率不存在时   即  x4=x5=a   且 a>0
则:令  y4=4
a
,y5=-4
a

∵∠POQ=90°∵
OQ
=(a,-4
a
OP
=(a,4
a

OQ
OP
=a2-16a=0
解得:a=16   或  a=0(舍去)
②当直线L的斜率存在时  设斜率为k    则   直线L的方程为:
y-b=k(x-a)   (k≠0)
∴联立方程:
y-b=k(x-a)
y2=16x

消去x 得:ky2-16y+16b-16ka=0
∴y4+y5=
16
k
,y4×y5=
16b-16ka
k

∴x4×x5=
(ka-b)2
k2

∵∠POQ=90°
OQ
OP
=x4×x5+y4×y5=
16b-16ka
k
+
(ka-b)2
k2
=0
即:k2(a2-16a)+k(16b-2ab)+b2=0对任意的k≠0都恒成立
∴有方程组:
a2-16a=0
16b-2ab=0
b2=0
且a≠0
∴解得:a=16,b=0
∴点M(16,0)
综上所述:存在定点M,使得以线段PQ为直径的圆经过坐标原点,
点M的坐标为:(16,0)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
c2
4
(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点(1,
4
2
3
)
(
3
3
2
,1)
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
OP
OE
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题15分)

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G: 是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.

(1)若椭圆C经过两点,求椭圆C的方程;

(2)当为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市姜堰市蒋垛中学高三(下)3月综合测试数学试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市高考数学三模试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案