精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱的所有棱长都是2分别是的中点.

1)求证:平面

2)求三棱锥的体积.

【答案】(1)详见解析;(2).

【解析】

1)推导出,从而平面平面,进而平面,再求出,由此能证明平面
2)本问方法较多,可用割补法,转换顶点法,构造法等,其中割补法较为方便,将转化为,即可求解.

解:(1)∵的中点,

∵三棱柱平面

∴平面平面,且平面平面

平面

平面

.

又∵在正方形中,分别是的中点,

平面.

2)解法一(割补法):

.

解法二(利用平行顶点轮换):

.

解法三(利用对称顶点轮换):

连结,交于点

的中点,

∴点到平面的距离等于点到平面的距离.

.

解法四(构造法):

连结,交于点,则的中点,再连结.

由题意知在中,,所以,且

,所以,所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等腰直角三角形BCD与等边三角形ABD中,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江南某湿地公园内有一个以为圆心,半径为20米的圆形湖心洲.该湖心洲的所对两岸近似两条平行线,且两平行线之间的距离为70米.公园管理方拟修建一条木栈道,其路线为(如图,右侧).其中,与圆相切于点米.设满足

1)试将木栈道的总长表示成关于的函数,并指出其定义域;

2)求木栈道总长的最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆 交于两点.

(1)若,求直线的方程;

(2)轴上是否存在定点,使得当变动时,总有直线的斜率之和为0?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.

(1)求商店日利润关于需求量的函数表达式;

(2)假设同组中的每个数据用该组区间的中点值代替.

①求这50天商店销售该海鲜日利润的平均数;

②估计日利润在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,侧面底面,底面是平行四边形,中点,点在线段上.

(Ⅰ)证明:

(Ⅱ)若 ,求实数使直线与平面所成角和直线与平面所成角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数.

1)证明:在定义域上存在唯一的极大值点;

2)若存在,使,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

同步练习册答案