【题目】已知两定点,点是平面内的动点,且,记的轨迹是
(1)求曲线的方程;
(2)过点引直线交曲线于两点,设,点关于轴的对称点为,证明直线过定点.
【答案】(1);(2)见解析
【解析】
设,根据条件列方程化简即可;(2)先探究特殊性,当点Q为椭圆的上顶
点(0,)时,直线RN过定点P(4,0).再讨论一般情形,设直线l:点R,N,P三点共线,因此直线RN经过定点P(4,0).
(1)设,,,
则,,
由于,
即,设,,
则,点的轨迹是以,为焦点的椭圆,
故,,,
所以,动点的轨迹的方程为:.
如图所示,
先探究特殊性,当点Q为椭圆的上顶点(0,)时,直线l:,
联立直线和椭圆方程得,
直线RN:令y=0,得x=4,
所以直线RN过定点P(4,0).
下面证明一般情形:
设直线l:
联立,
判别式
所以
即,
设,于是,
,
又,
解得,
所以,
所以点R,N,P三点共线,因此直线RN经过定点P(4,0).
综上,直线RN经过定点P(4,0).
科目:高中数学 来源: 题型:
【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员名(且),调整后研发人员的年人均投入增加%,技术人员的年人均投入调整为万元.
(1)要使这名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;
(2)是否存在这样的实数,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若,则”的否命题是“若,则”
B.“”是“双曲线的离心率大于”的充要条件
C.命题“,”的否定是“,”
D.命题“在中,若,则是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线l过点.
(1)若点F到直线l的距离为,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为(为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求与的极坐标方程;
(2)设与的交点为、,与的交点为、,且,求值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
对于各项均为整数的数列,如果(=1,2,3,…)为完全平方数,则称数
列具有“性质”.
不论数列是否具有“性质”,如果存在与不是同一数列的,且同
时满足下面两个条件:①是的一个排列;②数列具有“性质”,则称数列具有“变换性质”.
(I)设数列的前项和,证明数列具有“性质”;
(II)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换性质”,具有此性质的数列请写出相应的数列,不具此性质的说明理由;
(III)对于有限项数列:1,2,3,…,,某人已经验证当时,
数列具有“变换性质”,试证明:当”时,数列也具有“变换性质”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com