精英家教网 > 高中数学 > 题目详情

【题目】已知两定点,点是平面内的动点,且,记的轨迹是

(1)求曲线的方程;

(2)过点引直线交曲线两点,设,点关于轴的对称点为,证明直线过定点.

【答案】(1);(2)见解析

【解析】

,根据条件列方程化简即可;(2先探究特殊性,当点Q为椭圆的上顶

点(0)时,直线RN过定点P(4,0).再讨论一般情形,设直线l:R,N,P三点共线,因此直线RN经过定点P(4,0).

1)设

由于

,设

,点的轨迹是以为焦点的椭圆,

所以,动点的轨迹的方程为:

如图所示,

先探究特殊性,当点Q为椭圆的上顶点(0)时,直线l:,

联立直线和椭圆方程得,

直线RN:y=0,x=4,

所以直线RN过定点P(4,0).

下面证明一般情形:

设直线l:

联立

判别式

所以

,于是,

解得

所以

所以点R,N,P三点共线,因此直线RN经过定点P(4,0).

综上,直线RN经过定点P(4,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员名(),调整后研发人员的年人均投入增加%,技术人员的年人均投入调整为万元.

1)要使这名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;

2)是否存在这样的实数,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点是抛物线上不同两点,且(其中是坐标原点),直线交于点,线段的中点为.

(Ⅰ)求抛物线的准线方程;

(Ⅱ)求证:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,直线l过点

1)若点F到直线l的距离为,求直线l的斜率;

2)设AB为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求的极坐标方程;

(2)设的交点为的交点为,且,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

对于各项均为整数的数列,如果(=123…)为完全平方数,则称数

具有性质

不论数列是否具有性质,如果存在与不是同一数列的,且

时满足下面两个条件:的一个排列;数列具有性质,则称数列具有变换性质

I)设数列的前项和,证明数列具有性质

II)试判断数列12345和数列12311是否具有变换性质,具有此性质的数列请写出相应的数列,不具此性质的说明理由;

III)对于有限项数列123,某人已经验证当时,

数列具有变换性质,试证明:当时,数列也具有变换性质

查看答案和解析>>

同步练习册答案