精英家教网 > 高中数学 > 题目详情

【题目】在四面体ABCD中,过棱AB的上一点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H

(1)求证:截面EFGH为平行四边形

(2)若P、Q在线段BD、AC上,,且P、F不重合,证明:PQ截面EFGH

【答案】(1)见解析;(2)见解析

【解析】

(1)利用线面平行的性质定理得出线线平行,再利用平行公理得出又一组线线平行,有两组对边互相平行即可得证.

(2)先由题目中的比例证得两组线线平行,由面面平行的判定定理即可得证.

(1)证明:∵AD∥平面EFGH,平面ADB平面EHGH=EF,AD平面ABD,

∴AD∥EF ∵AD∥平面EHGH,平面ADC平面EHGH=GH,AD平面ADC,. ∴AD∥GH

由平行公理可得EF∥GH

同理可得EH∥FG

∴四边形EFGH为平行四边形.

(2)如图在CD上取点M,使,连接MQ

则PM∥BC∥FG,,则QM∥AD∥HG

PMQM=M∴平面PMQ平面EHGH

∵PQ平面PMQ

∴PQ∥截面EFGH

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知在平面直角坐标系,的参数方程为 (为参数)以轴为极轴 为极点建立极坐标系,在该极坐标系下,圆是以点为圆心,且过点的圆心.

(1)求圆及圆在平而直角坐标系下的直角坐标方程;

(2)求圆上任一点与圆上任一点之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足a1= +3.
(1)证明:{an+1}是等比数列;
(2)求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆的极坐标方程为

(1)若直线l与圆相切,求的值;

(2)若直线l与曲线为参数)交于AB两点,点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.

(1)求证:CE2=CDCB.
(2)若AB=2,BC= ,求CE与CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两运动员进行射击训练.已知他们击中的环数都稳定在环,且每次射击击中与否互不影响甲、乙射击命中环数的概率如下表:

若甲、乙两运动员各射击次,求甲运动员击中环且乙运动员击中环的概率.

若甲射击次,用表示这次射击击中环以上(含环)的次数,求随机变量的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1 , 则CN与AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F.

(1)证明:PB∥平面AEC;
(2)若ABCD为正方形,探究在什么条件下,二面角C﹣AF﹣D大小为60°?

查看答案和解析>>

同步练习册答案