【题目】在四面体ABCD中,过棱AB的上一点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H
(1)求证:截面EFGH为平行四边形
(2)若P、Q在线段BD、AC上,,且P、F不重合,证明:PQ∥截面EFGH
【答案】(1)见解析;(2)见解析
【解析】
(1)利用线面平行的性质定理得出线线平行,再利用平行公理得出又一组线线平行,有两组对边互相平行即可得证.
(2)先由题目中的比例证得两组线线平行,由面面平行的判定定理即可得证.
(1)证明:∵AD∥平面EFGH,平面ADB平面EHGH=EF,AD平面ABD,
∴AD∥EF ∵AD∥平面EHGH,平面ADC平面EHGH=GH,AD平面ADC,. ∴AD∥GH
由平行公理可得EF∥GH
同理可得EH∥FG
∴四边形EFGH为平行四边形.
(2)如图在CD上取点M,使,连接MQ
则PM∥BC∥FG,,则QM∥AD∥HG
PMQM=M∴平面PMQ∥平面EHGH
∵PQ平面PMQ
∴PQ∥截面EFGH
科目:高中数学 来源: 题型:
【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知在平面直角坐标系中,圆的参数方程为 (为参数)以轴为极轴, 为极点建立极坐标系,在该极坐标系下,圆是以点为圆心,且过点的圆心.
(1)求圆及圆在平而直角坐标系下的直角坐标方程;
(2)求圆上任一点与圆上任一点之间距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)若直线l与圆相切,求的值;
(2)若直线l与曲线(为参数)交于A,B两点,点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(1)求证:CE2=CDCB.
(2)若AB=2,BC= ,求CE与CD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两运动员进行射击训练.已知他们击中的环数都稳定在,,环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如下表:
()若甲、乙两运动员各射击次,求甲运动员击中环且乙运动员击中环的概率.
()若甲射击次,用表示这次射击击中环以上(含环)的次数,求随机变量的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1 , 则CN与AM所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F.
(1)证明:PB∥平面AEC;
(2)若ABCD为正方形,探究在什么条件下,二面角C﹣AF﹣D大小为60°?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com