精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求函数上的最小值;

(2)若函数处的切线互相垂直,求的取值范围;

(3)设,若函数有两个极值点,且,求的取值范围.

【答案】(1);(2);(3)

【解析】

1)求导后可得函数的单调性,从而得到;(2)利用切线互相垂直可知,展开整理后可知关于的方程有解,利用可得关于的不等式,解不等式求得结果;(3)根据极值点的定义可得:,从而得到,进而得到,令,利用导数可证得,从而得到所求范围.

(1)当时,

时,;当时,

上单调递减;在上单调递增

(2)由解析式得:

函数处的切线互相垂直

即:

展开整理得:

则该关于的方程有解

整理得:,解得:

(3)当时,

是方程的两根

,则

上单调递增

即:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调减函数是奇函数,当时,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一条小河岸边有相距两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离,河宽,通过测量可知,的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥分别为两岸上的点,且垂直河岸,的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)

(1)记为一年中两村所有人到集镇所走距离之和,试用表示

(2)试确定的余弦值,使得最小,从而符合建桥要求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面与侧面都是菱形, .

(1)证明:

(2)若三棱柱的体积为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的列联表,并据此判断是否有以上的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设直线交两坐标轴于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调递增区间;

(2)若函数有两个极值点恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案