精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.

1)求椭圆C的方程;

2)设P的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.

【答案】1;(2)存在,.

【解析】

1)根据题中所给的条件,结合椭圆的性质,得到,从而得到椭圆的方程;

2)解法一,首先设直线直线,与椭圆方程联立,利用韦达定理以及中点坐标公式得到P点坐标,从而有,假设存在使得,利用向量数量积等于零,从而求得结果.解法二,利用点差法

1)由题意得:

中,

椭圆方程为

2)解法一:设直线

,则

将*代入整理得

,则

的中点

设存在使得,则

,即对任意的都成立

存在使得

解法二:设

,① ,②

由①-②,得

中点,

设存在使得

,即

对任意都成立,即

存在使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的直观图及三视图如图所示,其中M N 分别是AFBC 的中点

1)求证:MN∥平面CDEF

2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内动点与点连线的斜率之积为.

1)求动点的轨迹的方程;

2)过点的直线与曲线交于两点,直线与直线分别交于两点.求证:以为直径的圆恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆E的离心率是,短轴长为2,若点AB分别是椭圆E的左右顶点,动点,直线交椭圆EP.

1)求椭圆E的方程

2)①求证:是定值;

②设的面积为,四边形的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若方程的实根个数不少于2个,证明:

2)若处导数相等,求的取值范围,使得对任意的,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中,,△为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项为正数的数列如果满足:存在实数,对任意正整数n恒成立,且存在正整数n,使得成立,则称数列为“紧密数列”,k称为“紧密数列”的“紧密度”.已知数列的各项为正数,前n项和为,且对任意正整数nABC为常数)恒成立.

1)当时,

①求数列的通项公式;

②证明数列是“紧密度”为3的“紧密数列”;

2)当时,已知数列和数列都为“紧密数列”,“紧密度”分别为,且,求实数B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

查看答案和解析>>

同步练习册答案