【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)设P为的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个多面体的直观图及三视图如图所示,其中M ,N 分别是AF、BC 的中点
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内动点与点,连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)过点的直线与曲线交于,两点,直线,与直线分别交于,两点.求证:以为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆E:的离心率是,短轴长为2,若点A,B分别是椭圆E的左右顶点,动点,,直线交椭圆E于P点.
(1)求椭圆E的方程
(2)①求证:是定值;
②设的面积为,四边形的面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项为正数的数列如果满足:存在实数,对任意正整数n,恒成立,且存在正整数n,使得或成立,则称数列为“紧密数列”,k称为“紧密数列”的“紧密度”.已知数列的各项为正数,前n项和为,且对任意正整数n,(A,B,C为常数)恒成立.
(1)当,,时,
①求数列的通项公式;
②证明数列是“紧密度”为3的“紧密数列”;
(2)当时,已知数列和数列都为“紧密数列”,“紧密度”分别为,,且,,求实数B的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:.
Ⅰ直线l的参数方程化为极坐标方程;
Ⅱ求直线l与曲线C交点的极坐标其中,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com