精英家教网 > 高中数学 > 题目详情
在Rt△ABC中,∠A=60°,∠C=90°,过点C做射线交斜边AB于P,则CP<CA的概率是
2
3
2
3
分析:由于过直角顶点C在∠ACB内部任作一射线CP,故可以认为所有可能结果的区域为∠ACB,可将事件A构成的区域为∠ACC',以角度为“测度”来计算.
解答:解:在AB上取AC'=AC,则∠ACC′=60°.
记A={在∠ACB内部任作一射线CP,与线段AB交于点P,CP<CA},
则所有可能结果的区域为∠ACB,
事件A构成的区域为∠ACC'.
又∠ACB=90°,∠ACC'=60°.
∴P(A)=
60°
90°
=
2
3

故答案为:
2
3
点评:本题主要考查了概率里的几何概型,在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,
i
j
分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,
AB
=
i
+
j
AC
=2
i
+m
j
,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠C=90°,AC=3,则
AB
AC
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么(
AB
-
AC
)•
AD
=
2
2
;若E是AB的中点,P是△ABC(包括边界)内任一点.则
AD
EP
的取值范围是
[-9,9]
[-9,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC=
3:2
3:2

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)
如图,在Rt△ABC中,∠C=90°,E为AB上一点,以BE为直径作圆O刚好与AC相切于点D,若AB:BC=2:1,  CD=
3
,则圆O的半径长为
2
2

查看答案和解析>>

同步练习册答案