精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且asinAcosC+csinAcosA= c,D是AC的中点,且cosB= ,BD=
(1)求角A的大小;
(2)求△ABC的最短边的边长.

【答案】
(1)解:∵cosB=

∴sinB=

又∵asinAcosC+csinAcosA= c,

∴正弦定理化简可得:sinAcosCsinA+sinAsinCcosA= sinC.

即sinA(cosCsinA+sinCcosA)= sinC

∴sinAsinB= sinC,

∵A+B+C=π,

∴C=π﹣(A+B)

∴sinAsinB= sin(A+B)

sinA= sinAcosB+ cosAsinB,

∴sinA=cosA.

即tanA=1,

∵0<A<π,

∴A=


(2)D是AC的中点,且cosB= ,BD=

根据余弦定理得c2+ b2 bc=26

sinA= sinC,且sinB× = sinC

解得:a=2

b=2

c=6

∴△ABC的最短边的边长2


【解析】(1)利用正弦定理化简并根据和与差的公式即可求出角A的值。(2)根据余弦定理建立关系求解出a、b、c的值即可得到△ABC的最短边的边长。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,曲线C由上半椭圆 和部分抛物线 连接而成,C1与C2的公共点为A,B,其中C1的离心率为

(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得PQ为直径的圆恰好过点A,若存在直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为 .设S的眼睛到地面的距离为

(1)求摄影爱好者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影爱好者有一视角范围为 的镜头,在彩杆转动的任意时刻,摄影爱好者是否都可以将彩杆全部摄入画面?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=12与抛物线x2=4y相交于A,B两点,F为抛物线的焦点,若过点F且斜率为1的直线l与抛物线和圆交于四个不同的点,从左至右依次为P1 , P2 , P3 , P4 , 则|P1P2|+|P3P4|的值 , 若直线m与抛物线相交于M,N两点,且与圆相切,切点D在劣弧 上,则|MF|+|NF|的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入n=10,则输出的S=(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x+m)﹣nlnx.
(1)当m=1,n>0时,求函数f(x)的单调减区间;
(2)n=1时,函数g(x)=(m+2x)f(x)﹣am,若存在m>0,使得g(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在[80,90)的人数为12人.

(Ⅰ)求此班级人数;
(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)记甲乙二人排在前三位的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F1 , 有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记Y为所组成的三位数各位数字之和.
(1)求Y是奇数的概率;
(2)求Y的概率分布和数学期望.

查看答案和解析>>

同步练习册答案