精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一年级名学生在寒假里每天阅读的平均时间(单位:小时)情况,随机抽取了名学生,记录他们的阅读平均时间,将数据分成组: ,并整理得到如下的频率分布直方图:

)求样本中阅读的平均时间为内的人数.

)已知样本中阅读的平均时间在内的学生有人,现从高一年级名学生中随机抽取一人,估计其阅读的平均时间在内的概率.

)在样本中,使用分层抽样的方法,从阅读的平均时间在内的学生中抽取人,再从这人中随机选取人参加阅读展示,则选到的学生恰好阅读的平均时间都在内的概率是多少?

【答案】;(;(

【解析】试题分析:(1根据直方图先求出阅读平均时间在内的概率为: 从而可得结果;2根据(人),可得人中阅读的平均时间在人,根据古典概型概率公式可得结果;)阅读平均时间在人数之比为,, 人阅读平均时间在 人阅读平均时间在利用列举法,可得在人中抽取人的基本事件有选到的学生阅读平均时间都在的事件有由古典概型概率公式可得结果.

试题解析:()由频率分布直方图可知,

阅读平均时间在内的概率为:

人数为

(人),

人中阅读的平均时间在人,

概率

∵阅读平均时间在人数之比为

设在挑选的人中, 人阅读平均时间在分别为

人阅读平均时间在分别为

人中抽取人的基本事件如下,

个基本事件,

选到的学生阅读平均时间都在的事件有个,

∴所求概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l1:2xay+4=0与直线l2平行,且l2过点(2,-2),并与坐标轴围成的三角形面积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10


(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y= ,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线 ,现已取出了10对样本数据(ti , yi)(i=1,2,3,…,10),且 =42500, =500,求拟合曲线方程. (附:线性回归方程 =a+bx中,b= ,a= ﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在函数,使得对于一切实数都成立,那么称为函数的一个承托函数.

已知函数的图象经过点

)若 ,写出函数的一个承托函数(结论不要求注明).

)判断是否存在常数 ,使得为函数的一个承托函数,且为函数的一个承托函数?若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin xcos x+cos2x+a;则f(x)的最小正周期为 , 若f(x)在区间[﹣ ]上的最大值与最小值的和为 ,则实数a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E、F分别是AB、AP的中点.
(1)求证:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥ 对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.
(1)求圆C的方程;
(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船A从某港口O将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以30海里/小时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以V海里/小时的航速匀速行驶,经过t小时与轮船B相遇.
(1)若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?
(2)假设轮船A的最高航行速度只能达到30海里/小时,则轮船A以多大速度及什么航行方向才能在最短时间与轮船B相遇,并说明理由.

查看答案和解析>>

同步练习册答案