精英家教网 > 高中数学 > 题目详情
(2014•长宁区一模)若(
x
-
2
x2
)n
的展开式中只有第六项的二项式系数最大,则展开式中的常数项是
180
180
分析:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.
解答:解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.
∵若(
x
-
2
x2
)n
的展开式中只有第六项的二项式系数最大,
∴n=10
(
x
-
2
x2
)n
的展开式的通项为
C
r
10
x
10-r
2
×(-1)r×2r×x-2r=
C
r
10
×(-2)r×x
10-r
2
-2r

10-r
2
-2r
=0,可得r=2
∴展开式中的常数项等于
C
2
10
×22
=180.
故答案是180.
点评:本题考查二项展开式,考查二项式系数,正确利用二项展开式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•长宁区一模)下列命题中,错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)设f(x)是R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)已知复数z=2+4i,w=
.
z
+1
(z-1)2
,则|w|=
5
17
5
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)已知函数f(x)=
x-52x+m
的图象关于直线y=x对称,则m=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)已知命题p:|1-
x+12
|≤1
,命题q:x2-2x+1-m2<0(m>0),若p是q的充分不必要条件,则实数m的范围是
(2,+∞)
(2,+∞)

查看答案和解析>>

同步练习册答案