精英家教网 > 高中数学 > 题目详情

【题目】三棱锥P﹣ABC中,底面△ABC满足BA=BC, ,P在面ABC的射影为AC的中点,且该三棱锥的体积为 ,当其外接球的表面积最小时,P到面ABC的距离为(
A.2
B.3
C.
D.

【答案】B
【解析】解:设AC的中点为D,连接BD,PD,则PD⊥平面ABC, ∵△ABC是等腰直角三角形,∴外接球的球心O在PD上,
设AB=BC=a,PD=h,外接球半径OC=OP=R,
则OD=h﹣R,CD= AC= a,
∵VPABC= = = ,∴a2=
∵CD2+OD2=OC2 , 即(h﹣R)2+ a2=R2
∴R= = = ≥3 =
当且仅当 即h=3时取等号,
∴当外接球半径取得最小值时,h=3.
故选:B.

设AB=a,棱锥的高为h,根据体积得出a与h的关系,根据勾股定理得出外接球半径R关于h的表达式,利用基本不等式得出R最小值时对应的h的值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且.

(1)求的解析式;

(2)证明在区间上是增函数;

(3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

(1)根据表格提供的数据求函数的一个解析式;

(2)根据(1)的结果,若函数周期为,当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m>0, .

(1) 若p是q的充分不必要条件,求实数m的取值范围;

(2) 若m=5,“”为真命题,“”为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体 中,,则此四面体外接球的表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(x-3) 2+(y+4) 2=1关于直线xy=0对称的圆的方程是(  )

A. (x+3)2+(y-4)2=1

B. (x-4)2+(y+3)2=1

C. (x+4)2+(y-3)2=1

D. (x-3)2+(y-4)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设过抛物线的焦点的直线交抛物线于点,若以为直径的圆过点,且与轴交于 两点,则( )

A. 3 B. 2 C. -3 D. -2

查看答案和解析>>

同步练习册答案