精英家教网 > 高中数学 > 题目详情
对任意一个非零复数z,定义集合Mz={w|w=z2n-1,n∈N}
(Ⅰ)设α是方程x+
1
x
=
2
的一个根.试用列举法表示集合Ma,若在Ma中任取两个数,求其和为零的概率P;
(Ⅱ)设复数ω∈Mz,求证:Mω⊆Mz
(Ⅰ)∵α是方程x2-
2
x+1=0
的根,∴α1=
2
2
(1+i)或α2=
2
2
(1-i)
.…(2分)
α1=
2
2
(1+i)
时,∵
α21
=i, 
α2n-11
=
(
α21
)
n
α1
=
in
α1

Mα1={
i
α1
-1
α1
-i
α1
1
α1
}
={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}

α2=
2
2
(1-i)
时,∵
α22
=-i

Mα2={
-i
α2
-1
α2
i
α2
1
α2
}=Mα1
={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}

α2=
2
2
(1-i)
时,∵
α22
=-i
,∴Mα2={
-i
α2
-1
α2
i
α2
1
α2
}=Mα1

因此,不论α取哪一个值,集合Mα是不变的,即Mα={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}
.…(8分)
于是,在Ma中任取两个数,求其和为零的概率 P=
2
C24
=
1
3
.…(10分)
(Ⅱ)证明:∵ω∈Mz,∴存在m∈N,使得ω=z2m-1.…(12分)
于是对任意n∈N,ω2n-1=z(2m-1)(2n-1),由于(2m-1)(2n-1)是正奇数,ω2n-1∈Mz,所以Mω⊆Mz.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2001•上海)对任意一个非零复数z,定义集合Mz={w|w=z2n-1,n∈N}
(Ⅰ)设α是方程x+
1
x
=
2
的一个根.试用列举法表示集合Ma,若在Ma中任取两个数,求其和为零的概率P;
(Ⅱ)设复数ω∈Mz,求证:Mω⊆Mz

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)对任意一个非零复数z,定义集合Az={ω|ω=zn,n∈N*},设a是方程x2+1=0的一个根,若在Aa中任取两个不同的数,则其和为零的概率为P=
1
3
1
3
(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

20.对任意一个非零复数z,定义集合Mz={w|w=znnN}.

(1)设z是方程x+=0的一个根,试用列举法表示集合Mz,若在Mz中任取两个数,求其和为零的概率P

(2)若集合Mz中只有3个元素,试写出满足条件的一个z值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年上海市杨浦区高考数学二模试卷(文科)(解析版) 题型:解答题

对任意一个非零复数z,定义集合Az={ω|ω=zn,n∈N*},设a是方程x2+1=0的一个根,若在Aa中任取两个不同的数,则其和为零的概率为P=    (结果用分数表示).

查看答案和解析>>

同步练习册答案