精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

【答案】(1)(2)

【解析】试题分析:(1)由余弦定理结合;可得,再由正弦定理可得结果;(2)先由,根据二倍角公式可得,则,根据两角差的正弦公式可得结果.

试题解析:(1)解法1

在△ABC中,因为cosB,所以

因为c=2a,所以,即

所以

又由正弦定理得

所以

解法2

因为cosBB∈(0,),所以sinB

因为c=2a,由正弦定理得sinC=2sinA

所以sinC=2sin(BC)=cosCsinC

即-sinC=2cosC

又因为sin2C+cos2C=1,sinC>0,解得sinC

所以

(2)因为cosB,所以cos2B=2cos2B-1=

又0<B<π,所以sinB

所以sin2B=2sinBcosB=2××

因为CB,即CB,所以A=π-(BC)=-2B

所以sinA=sin(-2B)

=sincos2B-cossin2B

×-(-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C 的参数方程为 (为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.

()求曲线C 的极坐标方程;

(),若l 1 l2与曲线C 相交于异于原点的两点 AB ,求AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣2,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上单调递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品关税与市场供应量P的关系近似地满足:P(x)=2 (其中t为关税的税率,且t∈[0, ],x为市场价格,b,k为正常数),当t= 时,市场供应量曲线如图所示:

(1)根据函数图象求k,b的值;
(2)若市场需求量Q,它近似满足Q(x)=2 .当P=Q时的市场价格为均衡价格,为使均衡价格控制在不低于9元的范围内,求税率t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,椭圆C (ab>0)的离心率为且过点(1,).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线lxm(ma)于点M.已知点B(1,0),直线PBl于点N

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,ABACEBC的中点,求证

(Ⅰ)平面AB1E⊥平面B1BCC1

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:
p1:若直线l和平面α内的无数条直线垂直,则l⊥α;
p2:若f(x)=2x﹣2x , 则x∈R,f(﹣x)=﹣f(x);
p3:若 ,则x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,则sinA>sinB.
其中真命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(1)求椭圆的方程;

(2)若不经过点的直线交于两点,且直线与直线的斜率之和为,证明:直线的斜率为定值.

查看答案和解析>>

同步练习册答案