【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:
单价(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
销量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若变量,具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数的分布列和数学期望.
参考公式:,.
科目:高中数学 来源: 题型:
【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:
运动达人 | 非运动达人 | 总计 | |
男 | 35 | 60 | |
女 | 26 | ||
总计 | 100 |
(1)(i)将列联表补充完整;
(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?
(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:,)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】疫情爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2000个样本分成三组,测试结果如“下表:
组 | 组 | 组 | |
疫苗有效 | 673 | ||
疫苗无效 | 77 | 90 |
已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.
(1)求,的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,求组应抽取多少个?
(3)已知,,求疫苗能通过测试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,点、分别是棱和的中点,给出下列结论:
①直线与所成角为;②正方体的所有棱中与直线异面的有条;③直线平面;④平面平面.其中正确的是( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数,曲线上的点的极坐标分别为.
(1)过O作线段的垂线,垂足为H,求点H的轨迹的直角坐标方程;
(2)求两点间的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com