精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

(1)求椭圆的方程;

(2)是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值.为坐标原点

【答案】(1)(2)的最大值为.

【解析】

试题分析:(1)首先由离心率的概念可得,然后由长轴长可得的值,进而可得出所求的结果;(2)首先的面积为的面积为,并分两类讨论:直线斜率不存在和直线斜率存在,分别联立直线与椭圆的方程并表达出,然后结合基本不等式求解其最大值即可得出所求的结果.

试题解析:(1)由题意得,又,则,所以.

,故椭圆的方程为.

(2)的面积为的面积为.

当直线斜率不存在时,直线方程为,此时不妨设面积相等,.

当直线斜率存在时,设直线方程为,设

和椭圆方程联立得,消掉.

显然,方程有根,且.

此时.

因为,所以上式时等号成立.

所以的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于数列为数列是前项和,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量和中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于4800元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,该函数图像过点,与点相邻函数图像上的一个最高点为

(1)求该函数的解析式

(2)求函数在区间上的最值及其对应的自变量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:

1PA,PB,PC

21张奖券的中奖概率;

31张奖券不中特等奖且不中一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第年需要付出设备的维修和工人工资等费用的信息如下图 .

(1

(2引进这种设备后,第几年后该公司开始获利;

(3这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等比数列, 为数列的前项和,且

(1)求数列的通项公式.

(2)设为递增数列.若求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额(单位:万元)之间有下列对应数据:


2

4

5

6

8



40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系,且回归方程为,则下列说法:销售额与广告费支出正相关;丢失的数据(表中处)为30该公司广告费支出每增加1万元,销售额一定增加万元;若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有( )

A1B2C3D4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是______,样本是______,样本量是______.

查看答案和解析>>

同步练习册答案