精英家教网 > 高中数学 > 题目详情
3.已知圆M与x轴相切且过点(0,2),直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+\sqrt{3}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与圆M的圆心的轨迹方程;
(2)P为直线l上任意一点,Q为C上的任意一点,求P、Q两点间距离的最小值.

分析 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+\sqrt{3}t}\end{array}\right.$,消去参数,可得普通方程;设C(x,y),则$\sqrt{{x}^{2}+(y-2)^{2}}$=|y|,可得圆M的圆心的轨迹方程;
(2)求出与直线l平行,与曲线相切的切点坐标,利用点到直线的距离公式,即可求出P、Q两点间距离的最小值.

解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+\sqrt{3}t}\end{array}\right.$,消去参数,可得普通方程为y-2=$\sqrt{3}$(x-1);
设C(x,y),则$\sqrt{{x}^{2}+(y-2)^{2}}$=|y|,可得x2=4y-4;
(2)由x2=4y-4可得y=$\frac{1}{4}$(x2+1),∴y′=$\frac{1}{2}$x
令$\frac{1}{2}$x=$\sqrt{3}$,则x=2$\sqrt{3}$,∴y=4,
∴P、Q两点间距离的最小值为(2$\sqrt{3}$,4)到直线l的距离d=$\frac{4-\sqrt{3}}{\sqrt{3+1}}$=2-$\frac{1}{2}\sqrt{3}$.

点评 本题考查了两点之间的距离公式、导数的几何意义,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知直线l:3x-4y+5=0.
(1)求与l平行且距离为3的直线方程;
(2)一光线从原点出发,经直线l反射后经过点(2,0),求反射光线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[-2,2]上随机取两个实数a,b,则“ab>1”是“|a|+|b|>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且满足a1=1,an+1=Sn+1(n∈N+
(1)求{an}的通项公式;
(2)数列{bn}是等差数列,前n项和为Tn,若T3=30,bn≥0(n∈N+)且a1+b1,a2+b2,a3+b3成等比数列,求Tn
(3)证明:$\frac{{T}_{n}}{{a}_{n}}$≤9(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列关于空间向量的运算法则正确的是(  )
①$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$
②($\overrightarrow{a}$+$\overrightarrow{b}$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow{b}$+$\overrightarrow{c}$)
③(λ+μ)$\overrightarrow{a}$=λ$\overrightarrow{a}$+μ$\overrightarrow{a}$(λ,μ∈R)
④λ($\overrightarrow{a}$+$\overrightarrow{b}$)=λ$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=ax2+bx+c(a>0)的图象是抛物线,其焦点到准线的距离是1,则a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-kx}{x-1}$为奇函数.
(1)求常数k的值;
(2)若a>b>1,试比较f(a)与f(b)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(0,1,1),$\overrightarrow{b}$=(-1,-1,0),则两向量的夹角为(  )
A.60°B.120°C.-60°D.240°

查看答案和解析>>

同步练习册答案