精英家教网 > 高中数学 > 题目详情
在1和15之间插入两数,使前三数成等比数列,后三数成等差数列,求这两个数.
考点:等比数列的通项公式
专题:等差数列与等比数列
分析:设在1和15之间插入的两数为a和b,由题意可得a2=b,2b=a+15,解方程组可得.
解答: 解:设在1和15之间插入的两数为a和b,
∵前三数成等比数列,后三数成等差数列,
∴a2=b,2b=a+15,解得
a=3
b=9
a=-
5
2
b=
25
4

∴这两个数为3和9,或-
5
2
25
4
点评:本题考查等差数列和等比数列,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(4a-3,3-2a2),a∈R,且y=f(2x-3)是偶函数,又g(x)=x3+ax2+
x
2
+
1
4
,存在x0∈(k,k+
1
2
),k∈Z,使得g(x0)=x0,则满足条件的实数k的个数为(  )
A、3B、2C、4D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
α
β
的夹角θ定义:
α
×
β
=|
α
||
β
|sinθ 若平面内互不相等的两个非零向量
a
b
满足:|
a
|=1,(
a
-
b
)与
b
的夹角为150°,
a
×
b
的最大值为(  )
A、2
B、
3
C、
2+
3
2
D、
2+
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

非零向量
a
b
满足|
a
|=1,|
b
|=2,|
a
-
b
|=2,则|
a
+
2b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知
BA
BC
=-3,cosB=-
3
7
,b=2
14
.求:
(Ⅰ)a和c的值;
(Ⅱ)sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时,总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数,下列说:
①函数f(x)=x2(x∈R)是单函数;
②函数y=tanx,x∈(-
π
2
π
2
)是单函数;
③若函数f(x)是单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④若f:A→B是单函数,则对于任意b∈B,它至多有一个原象;
⑤若函数f(x)是某区间上的单函数,则函数f(x)在该区间上具有单调性.
其中正确的是
 
.(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,a1=
3
2
,数列{bn}是等比数列,且b1=a1,b2=-a3,b3=a4,数列{bn}的前n项和为Sn,记点Qn(bn,Sn),n∈N*
(1)求数列{bn}的通项公式;
(2)证明:点Q1、Q2、Q3、…、Qn、…在同一直线l上,并求出直线l方程;
(3)若A≤Sn-
1
Sn
≤B对n∈N*恒成立,求B-A的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为3m的
1
4
圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长AB=xm,圆柱的体积为Vm3
(1)写出体积V关于x的函数关系式,并指出定义域;
(2)当x为何值时,才能使做出的圆柱形罐子体积V最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,如果a2+b2-c2<0,那么△ABC是(  )
A、锐角三角形
B、直角三角形
C、等腰三角形
D、钝角三角形

查看答案和解析>>

同步练习册答案