精英家教网 > 高中数学 > 题目详情
5.设x1、x2是关于x的二次方程x2-2kx+1-k2=0的两个实根,k为实数,则$x_1^2+x_2^2$的最小值为(  )
A.-2B.-1C.1D.2

分析 x1,x2是方程x2-2kx+1-k2=0的两个实数根,故方程有实数根,则△≥0,由此不难求出参数K的范围,而要求x12+x22的最小值可以先将x12+x22化为(x1+x22-2x1•x2的形式再利用韦达定理(即一元二次方程根与系数的关系)将其转化为关于K的不等式,进面求出x12+x22的最小值.

解答 解:∵x1,x2是方程x2-2kx+1-k2=0的两个实数根.
△=(2k)2-4(1-k2)=8k2-4≥0.
即k2≥$\frac{1}{2}$.
又∵x1+x2=2k,x1•x2=1-k2
∴x12+x22=(x1+x22-2x1•x2=6k2-2≥1.
故x12+x22的最小值为1.
故选:C.

点评 代数的核心内容是函数,但由于函数、不等式、方程之间的辩证关系,故我们在解决函数问题是经常要用到方程的性质,其中韦达定理是最重要的方程的性质,需要好好学习.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{kx-xlnx+1}{e^{x}}$(k∈R)在点(1,f(1))处的切线为2x+my-4=0(m∈R).
(Ⅰ)求k的值;
(Ⅱ)设g(x)=(x+1)f(x),求证:g(x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知关于实数x,y的方程组$\left\{\begin{array}{l}{{x}^{3}+{y}^{3}=2}\\{y=kx+d}\end{array}\right.$没有实数解,则实数k,d的取值范围为k=-1,d≤0或d>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a,b∈R,且a2+4b2=4,求证:|3a2-16ab-12b2|≤20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高一.2班学生每周用于数学学习的时间x(单位:h)与数学成绩y(单位:分)之间有如下数据:
x24152319161120161713
y92799789644783687159
某同学每周用于数学学习的时间为18小时,试预测该生数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,G在BC上,且CG=$\frac{1}{3}$CB
(1)求证:PC⊥BC;
(2)求三棱锥C-DEG的体积;
(3)AD边上是否存在一点M,使得PA∥平面MEG?若存在,求AM的长;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若A(-1,-1)、B(1,3)、C(x,5)共线,且$\overrightarrow{AB}=λ\overrightarrow{BC}$,则λ等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).
(Ⅰ)若y1•y2=-8,求抛物线C的方程;
(Ⅱ)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市为了考核甲、乙两部门的工作情况,随机访问了20位市民,根据这20位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)分别估计该市的市民对甲、乙两部门的评分不低于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.

查看答案和解析>>

同步练习册答案