精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)证明:上单调递减;

2)已知单调递增,记函数的最小值为.

①求的表达式;

②求的最大值.

【答案】1)见解析;(2)①;②2.

【解析】

1)直接利用单调性的定义证明;

2)①先求得函数时的最小值,再看当时,函数的最小值,只需对a讨论,借助于二次函数的单调性求得答案.

②直接由解析式得解.

1)任取x1x2∈(01),设x1x2,则

fx1)﹣fx2)=

0x1x21,∴,∴2

0,即fx1)﹣fx2>0

fx1)>fx2).

∴函数fx)在(01)上单调递减;

2)①∵单调递增,∴函数时满足在(01)上单调递减,在单调递增,此时在时的最小值为

时,对称轴为

时,二次函数开口向上,

a0时,函数时单调递减,函数

时,即a>1时,

<a时,

综上,

②由,可得当a=1时,函数有最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

映射不一定是函数,但函数一定是其定义域到值域的映射;

函数的反函数是,则

函数的最小值是

对于函数,则既是奇函数又是偶函数.

其中所有正确命题的序号是( ).

A.①③B.②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出函数如下表,则f〔g(x)〕的值域为( )

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点作抛物线的两条切线,切点分别为,直线的斜率为2.

(1)求抛物线的标准方程;

(2)与圆相切的直线,与抛物线交于两点,若在抛物线上存在点,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放40周年,改革开放40年来,从开启新时期到跨入新世纪,从站上新起点到进人新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌,40年来我们始终坚持保护环境和节约资源,坚持推进生态文明建设,郑州市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x(单位:百万元):,处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):.

(Ⅰ)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于x的函数解析式和定义域。

(Ⅱ)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: . (其中为自然对数的底数,

(Ⅰ)证明:

(Ⅱ)设,是否存在实数,使得对任意成立?若存在,求出的一个值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某粮油超市每月按出厂价30/袋购进种大米,根据以往的统计数据,若零售价定为42/,每月可销售320.现为了促销,经调查,若零售价每降低一元,则每月可多销售40.在每月的进货都销售完的前提下,零售价定为多少元/袋以及每月购进多少袋大米,超市可获得最大利润,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)若,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形中,是边长为l的正方形,平面底面,若分别是的中点.

(1)求证:底面

(2)求几何体的体积.

查看答案和解析>>

同步练习册答案