【题目】将两块三角板按图甲方式拼好,其中, , ,
,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.
(1)求证: ;
(2)求证: 为线段中点;
(3)求二面角的大小的正弦值.
【答案】(1)见解析(2)见解析(3)
【解析】试题分析:(2)由AD在平面ABC上的射影与BC垂直,即可证明;
(2)通过计算,求得AD=BD,再由等腰三角形高线即中线的性质证得;
(3)利用射影定理作出二面角D-AC-B的平面角,再由正弦定义求得.
试题解析:
(1)证明:由已知D在平面ABC上的射影
O恰好在AB上, ∴DO⊥平面ABC,
∴AO是AD在平面ABC上的射影.
又∵BC⊥AB,∴BC⊥AD.
(2)解:由(1)得AD⊥BC,又AD⊥DC
又BC∩DC=C,∴AD⊥平面BDC
又∵BD平面ADB,∴AD⊥BD,
在RT⊿ABD中,由已知AC = 2,得,AD = 1,∴BD = 1, ∴BD = AD,
∴O是AB的中点.
(3)解:过D作DE⊥AC于E,连结OE,
∵DO⊥平面ABC,∴OE是DE在平面ABC上的射影.∴OE⊥AC
∴∠DEO是二面角D-AC-B的平面角,
且
即二面角D-AC-B的正弦值为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆: ()的离心率为,连接椭圆的四个顶点所形成的四边形面积为.
(1)求椭圆的标准方程;
(2)若椭圆上点到定点()的距离的最小值为1,求的值及点的坐标;
(3)如图,过椭圆的下顶点作两条互相垂直的直线,分别交椭圆于点, ,设直线的斜率为,直线: 分别与直线, 交于点, .记, 的面积分别为, ,是否存在直线,使得?若存在,求出所有直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.
(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.
(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i | 1 | 2 | 3 | 4 | 5 | 合计 |
xi(百万元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百万元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百万元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别为,点,点在线段的中垂线上.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,直线与的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 +ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量(克)与时间(天)之间的函数关系如下表所示:
第天 | 5 | 15 | 20 | 30 |
销售量克 | 35 | 25 | 20 | 10 |
(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;
(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.
(注:日销售金额=每克的销售价格×日销售量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com