精英家教网 > 高中数学 > 题目详情
精英家教网如图,空间四边形OABC各边以及AC,BO的边长都为a,点D,E分别是边OA,BC的中点,连接DE 
(1)计算DE的长;     
(2)求A点到平面OBC的距离.
分析:(1)连接AE,OE,由题设知OE=AE=
3
2
a
,所以△OEA是等腰三角形.DE⊥AO,由此能求出DE的长.
(2)由AE⊥BC,OE⊥BC,知面ABC⊥面AOE.在面AOE中,作OF⊥AE,则OF⊥面ABC,所以,OF的长即为点O到面ABC的距离.由△AOE是等腰三角形,DE是底AO上的高,OF是AE边上的高,由面积公式得:
1
2
AO×DE=
1
2
AE×OF,由此能求出点O到平面ABC的距离.
解答:解:(1)连接AE,OE,因空间四边形OABC各边以及AC,BO的长都是a,
D,E是OA,BC的中点,所以,OE=AE=
3
2
a

所以△是等腰三角形.
所以DE⊥AO,
因此,DE=
OE2-OD2
=
3
4
a2-
1
4
a2  
=
2
2
a

(2)∵AE⊥BC,OE⊥BC,
∴BC⊥面AOE,∴面ABC⊥面AOE.
在面AOE中,作OF⊥AE,则OF⊥面ABC,
所以,OF的长即为点O到面ABC的距离.
∵△AOE是等腰三角形,DE是底AO上的高,OF是AE边上的高,
∴由面积公式得:
1
2
AO×DE=
1
2
AE×OF,
1
2
×a×
2
2
a=
1
2
×
3
2
× OF
a,
解得.OF=
6
3
a,所以点O到平面ABC的距离是
6
3
a
点评:本题考查点、线、面间的距离计算,解题时要认真审题,注意立体几何性质的合理运用,恰当地把空间距离等价转化为平面距离进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,空间四边形OABC中,
OA
=
a
OB
=
b
OC
=
c
,点M在
OA
上,且OM=2MA,点N为BC中点,则
MN
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图,空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且使MG=2GN,
OG
=x
OA
+y
OB
+z
OC
,则x+y+z=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形OABC中,
OA
=a,
OB
=b,
OC
=c,点M在OA上,且OM=
1
2
MA,N为BC中点,则
MN
等于(  )

查看答案和解析>>

科目:高中数学 来源:2012届四川省成都市六校协作高二下学期期中考试理科数学 题型:选择题

如图,空间四边形OABC中,=a,=b,=c,点M在OA上,且OM=MA,N为BC中点,则 等于                             (     )

A.-a+b+c  B. a-b+c   C.a+b-c    D.a+b-c

 

查看答案和解析>>

同步练习册答案