精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=sinx-2$\sqrt{3}$sin2$\frac{x}{2}$.f(x)的最小值是-2-$\sqrt{3}$.

分析 运用三角函数的公式得出f(x)=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$,结合正弦函数的性质求解即可.

解答 解:∵函数f(x)=sinx-2$\sqrt{3}$sin2$\frac{x}{2}$=sinx+$\sqrt{3}$cosx$-\sqrt{3}$
∴f(x)=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$
∵-1≤sin(x$+\frac{π}{3}$)≤1,
∴-2-$\sqrt{3}$≤2sin(x+$\frac{π}{3}$)-$\sqrt{3}$$≤2-\sqrt{3}$
故答案为:-2-$\sqrt{3}$.

点评 本题考查了三角函数的图象和性质,属于简单的复合函数的运用问题,属于中档题,关键是变形得出f(x)=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知{an}是等差数列,其中a1=25,a4=16
(1)求{an}的通项;  
(2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{1}}{{z}_{2}}$等于(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{1}{5}$+$\frac{2}{5}$iD.-$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列结论:
①平面α与平面β相交,它们只有有限个公共点;
②如果两个平面有三个不共线的公共点,那么这两个平面重合;
③四个侧面都全等的四棱柱为正四棱柱;
④底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
其中正确的是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2+ax+b(a,b∈R).
(1)若g(x)=$\frac{f(x)}{x+1}$,当a=1,b=2时,求g(x)在[0,1]上的最小值;
(2)若h(x)=f(2x-2-x)+22x+2-2x,b=2,求h(x)在[1,+∞)上的最小值m(a)的解析式;
(3)若存在x∈[0,1],使得f(x)=0,且0≤b-2a≤1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某建筑公司计划450万元购买甲型与乙型两款挖土机,购买总数不超过50辆,其中购买甲型挖土机需要13万元/辆,购买乙型挖土机需要8万元/辆,假设甲型挖土机的纯利是2万元/辆,乙型挖土机的纯利润是1.5万元/辆,为了利润最大化,要如何购买两种挖土机?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{2ax}{2x+1}$-ln(2x+1)(a≠0).
(1)求函数f(x)的单调区间;
(2)当a=e时,若函数y=f(x)-k在x∈[0,1]上有唯一零点,求实数k的取值范围;
(3)求证:ln$\frac{{e}^{2}}{2x+1}$≤$\frac{e}{2x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论中正确的个数是(  )
①当a<0时,(a2)${\;}^{\frac{1}{2}}$=a;
②$\root{n}{{a}^{n}}$=|a|(n>1,n∈N*);
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-7)0的定义域是(2,+∞);
④若100x=5,10y=2,则2x+y=1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前n项和为Sn,a1=1,S6=9S3.求{an}的通项公式.

查看答案和解析>>

同步练习册答案