精英家教网 > 高中数学 > 题目详情

,有下列命题:

①若,则上是单调函数;

②若上是单调函数,则

③若,则

④若,则

其中,真命题的序号是     

 

【答案】

①③

【解析】

试题分析:

对于①若,则上是单调函数;符合一次函数性质,成立。

对于②若上是单调函数,则;可能a<0也成立,因此错误。

对于③若,则 ;正确。

对于④若,则.不成立。利用其逆否命题来判定,故填写①③

考点:命题的真假

点评:解决的关键是对于函数单调性,以及命题的真值的综合运用,属于基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m是两条不同的直线,α,β是两个不同的平面,有下列命题:
①l∥m,m?α,则l∥α;
②l∥α,m∥α则l∥m;
③α⊥β,l?α,则l⊥β;
④l⊥α,m⊥α,则l∥m.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p,q为简单命题,若“p∨q”为假命题,则“?p∧?q为真命题”;
③“a>2”是“a>5”的必要条件;
④若函数f(x)=(x+1)(x+a)为偶函数,则a=-1;
⑤将函数y=sin(2x)(x∈R)的图象向右平移
π
8
个单位即可得到函数y=sin(2x-
π
8
)(x∈R)
的图象;
其中所有正确的说法序号是
①②③④
①②③④

查看答案和解析>>

同步练习册答案