精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c,角A,B,C成等差数列.
(1)求cosB的值;
(2)边a,b,c成等比数列,求sinAsinC的值.

(1)CosB=    (2)

解析解:(1)∵角A、B、C成等差数列,∴2B=A+C,
又∵A+B+C=π,∴B=,∴cosB=.
(2)∵边a,b,c成等比数列,
∴b2=ac,根据正弦定理得sin2B=sinAsinC,
∴sinA·sinC=sin2B=(sin2=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量,且向量.
(1)求角A的大小;
(2)若的面积为,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a、b、c分别为△ABC三个内角A、B、C的对边,acosC+asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面积为,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA.
(1)求A;
(2)若a=2,△ABC的面积为,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数处取最小值.
(1)求的值。
(2)在△ABC中,a、b、c分别是A、B、C的对边,已知a=l,b=,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别为角A、B、C的对边,若m=(sin2,1),n="(-2,cos" 2A+1),且m⊥n.
(1)求角A的度数;
(2)当a=2,且△ABC的面积S=时,求边c的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求函数的最小正周期;
(2)在中,角A,B,C的对边分别为a,b,c,且满足,若,求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos sin+sin2-cos2.
(1)求函数f(A)的最大值;
(2)若f(A)=0,C=,a=,求b的值.

查看答案和解析>>

同步练习册答案