精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$则f(f(e))=2.

分析 先求出f(e)=-lne=-1,从而f(f(e))=f(-1),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$
∴f(e)=-lne=-1,
f(f(e))=f(-1)=($\frac{1}{2}$)-1=2.
故答案为:2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.直角坐标系xOy中,已知点M(-1,0)、N(1,0),点P到点M的距离是到点N的距离的$\sqrt{3}$倍,
(1)求点P的轨迹E的方程;
(2)已知不经过原点的直线l:y=-x+b与轨迹E交于A、B两点,若以AB为直径的圆恒经过点N,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F作倾斜角为60°的直线l,直线l与双曲线交于A,与y轴交于点B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,则该双曲线的离心率等于(  )
A.$\sqrt{3}$+1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{3}}{2}$+1D.$\frac{\sqrt{3}-1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)当a=0,b=-1时,方程f(x)=mx在区间[$\frac{1}{e}$,+∞)内有两个不同的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=b+logax的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,且AC⊥FB.
(1)求证:平面EAC⊥平面FCB;
(2)若线段AC上存在点M,使AE∥平面FDM,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,x2-x+1≤0,则(  )
A.¬p:?x0∈R,x02-x0+1≤0B.¬p:?x∈R,x2-x+1≥0
C.¬p:?x∈R,x2-x+1>0D.¬p:?0x∈R,x02-x0+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为(  )
A.120B.160C.280D.400

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数f(x)满足,当x<0时,f(x)=$\frac{x}{x-1}$,则曲线y=f(x)在点(2,f(2))处的切线的斜率为$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案