精英家教网 > 高中数学 > 题目详情

【题目】正四棱柱中,,则与平面所成角的正弦值为__________

【答案】

【解析】分析:建立空间直角坐标系,求出平面的法向量,利用向量法即可求AD1与面BB1D1D所成角的正弦值.

详解:以D为原点,DA,DC,DD1分别为x轴,y轴,z轴,建立如图所示空间直角坐标系D﹣xyz.

AB=1,则D(0,0,0),A(1,0,0),

B(1,1,0),C(0,1,0),D1(0,0,2),

A1(1,0,2),B1(1,1,2),C1(0,1,2).

AD1与面BB1D1D所成角的大小为θ,=(﹣1,0,2),

设平面BB1D1D的法向量为=(x,y,z),=(1,1,0),=(0,0,2),

x+y=0,z=0.

x=1,则y=﹣1,所以=(1,﹣1,0),

sinθ=|cos<>|=

所以AD1与平面BB1D1D所成角的正弦值为

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路

(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)

(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为的直线与椭圆交于两点是以为直角顶点的等腰直角三角形则椭圆的离心率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点分别为是双曲线上一点的内切圆半径为则其渐近线方程是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 恰有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c, =
(1)求角C的大小;
(2)求sinAsinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的右焦点F(1,0),过F的直线l与椭圆C交于A,B两点,当l垂直于x轴时,|AB|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在点T,使得 为定值?若存在,求出点T坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=emx﹣lnx﹣2.
(1)若m=1,证明:存在唯一实数t∈( ,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:

(1)求关于的线性回归方程(计算结果精确到);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).

参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为

,其中.

查看答案和解析>>

同步练习册答案