精英家教网 > 高中数学 > 题目详情
椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
(I);(II)是定值900  .

试题分析:(I)设椭圆的方程为,有,得,把代入椭圆方程得,从而求出,即可求出椭圆方程;(II)利用直线与圆锥曲线相交的一般方法,将直线方程与椭圆方程联立方程组,利用韦达定理,求,继而判定是否为定值。
试题解析:(I)设椭圆的方程为,由于焦点为, 可知,即,把代入椭圆方程得,解得,故椭圆的方程为;
(II)设直线的方程为,
联立方程组可得,化简得:,
,则,又, ,由,
所以,所以,所以为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2)若点在第一象限,证明当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为 为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形.
(1)求椭圆的标准方程;
(2)是否存在直线交与椭圆于,且使,使得的垂心,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,等腰梯形中,. 以为焦点,且过点的双曲线的离心率为;以为焦点,且过点的椭圆的离心率为,则的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为椭圆上一点,为两焦点,,则椭圆的离心率        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

同步练习册答案