精英家教网 > 高中数学 > 题目详情
18.在△ABC中,边a,b,c分别是角A,B,C的对边,cosA=$\frac{4}{5}$,b=2,△ABC的面积S=3,则边a的值为$\sqrt{13}$.

分析 由内角的范围和平方关系求出sinA,由题意和三角形的面积公式求出c,由余弦定理求出a的值.

解答 解:由cosA=$\frac{4}{5}$和0<A<π得,
sinA=$\sqrt{1-co{s}^{2}A}=\frac{3}{5}$,
∵b=2,△ABC的面积S=3,
∴$\frac{1}{2}bcsinA=3$,则c=5,
由余弦定理得,a2=b2+c2-2bccosA
=4+25-$2×2×5×\frac{4}{5}$=13,
∴a=$\sqrt{13}$,
故答案为:$\sqrt{13}$.

点评 本题考查余弦定理,三角形的面积公式,以及平方关系的应用,注意内角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知sinα=-$\sqrt{3}$cosα,则tan2α=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P(x0,y0)是单位圆上任一点,将射线OP绕点O顺时针转$\frac{π}{3}$到OQ交单位圆与点Q(x1,y1),若my0-y1的最大值为$\frac{3}{2}$,则实数m=$\frac{1±\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,则m的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)当a=b=1时,求满足f(x)=3x的x的值;
(2)若函数f(x)是定义在R上的奇函数,
①判断f(x)在R的单调性并用定义法证明;
②当x≠0时,函数g(x)满足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若对任意x∈R且x≠0,不等式g(2x)≥m•g(x)-11恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左,右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}Q}$.
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若F1,F2是椭圆C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,$\sqrt{5}$)的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1处的切线方程;
(2)求y=f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合M={(x,y)|y=$\sqrt{4-{x}^{2}}$},N={(x,y)|x-y+m=0},若M∩N的子集恰有4个,则m的取值范围是(  )
A.(-2$\sqrt{2}$,2$\sqrt{2}$)B.[-2,2$\sqrt{2}$)C.(-2$\sqrt{2}$,-2]D.[2,2$\sqrt{2}$)

查看答案和解析>>

同步练习册答案