精英家教网 > 高中数学 > 题目详情
5.已知a,b∈R,定义运算“?”:a?b=$\left\{\begin{array}{l}{aa-b≤1}\\{ba-b>1}\end{array}\right.$,函数f(x)=(x2-2)?(x-1),x∈R,若方程f(x)-a=0只有两个不同实数根,则实数a的取值范围是(  )
A.[-2,-1]∪(1,2)B.(-2,-1]∪(1,2]C.[-2,-1]∪[1,2]D.(-2,-1]∪(1,2)

分析 根据定义的运算法则化简函数f(x)=(x2-2)?(x-1)的解析式,并求出f(x)的解析式,函数y=f(x)-a的图象与x轴恰有两个公共点转化为y=f(x),y=a图象的交点问题,结合图象求得实数a的取值范围.

解答 解:∵a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,函数f(x)=(x2-2)?(x-1),
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,-1≤x≤2}\\{x-1,x<-1或x>2}\end{array}\right.$,
分别画出y=f(x)与y=a的图象,如图所示:
结合图象可得方程f(x)-a=0只有两个不同实数根,
则-2<a≤-1,或1<a≤2,
故选:B.

点评 本小题主要考查函数的零点与方程根的关系、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大小;
(Ⅱ) 若a=$\sqrt{7}$,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=2px(p>0)过点A($\frac{1}{2}$,$\sqrt{2}$),其准线与x轴交于点B,直线AB与抛物线的另一个交点为M,若$\overrightarrow{MB}$=λ$\overrightarrow{AB}$,则实数λ为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,1]上随机选取两个数x和y,则y>3x的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)的单调区间;
(2)对任意a∈[1,4),且存在x∈[1,e3],使得不等式f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x+a|
(Ⅰ)当a=3时,解关于x的不等式|x-1|+|x+a|>6
(Ⅱ)若函数g(x)=f(x)-|3+a|存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某四棱锥的三视图如图所示,则该四棱锥的底面的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|x(3-x)>0},集合B={y|y=2x+2},则A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,a3a7=-16,a4+a6=0,求:
(1)求{an}的通项公式;
(2){an}的前n项和Sn

查看答案和解析>>

同步练习册答案