精英家教网 > 高中数学 > 题目详情
3.若在△ABC中,$\frac{b+a}{a}$=$\frac{sinB}{sinB-sinA}$,且cos2C+cosC=1-cos(A-B),则△ABC的形状为直角三角形.

分析 利用两角和与差的余弦公式、二倍角公式化简:cos2C+cosC=1-cos(A-B),利用正弦定理换成边的关系,利用正弦定理把$\frac{b+a}{a}=\frac{sinB}{sinB-sinA}$转化成边的关系,联立方程后即可判断出三角形的形状.

解答 解:由题意得,cos2C+cosC=1-cos(A-B),
则cosC+cos(A-B)=1-cos2C,
因为A+B+C=π,所以cos(A-B)-cos(A+B)=2sin2C,
则sinAsinB=sin2C,根据正弦定理,ab=c2,①,
因为$\frac{b+a}{a}=\frac{sinB}{sinB-sinA}$,所以由正弦定理得$\frac{b+a}{a}=\frac{b}{b-a}$,
化简可得,b2-a2=ab,②,
由①②得,b2-a2=c2,则b2=a2+c2
所以B=90°,则△ABC是直角三角形,
故答案为:直角三角形.

点评 本题考查两角和与差的余弦公式、二倍角公式,以及正弦定理的应用,三角形的形状的判断,考查了学生分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知z为复数,$\frac{z+3}{z-3}$为纯虚数,且z在复平面内对应的点为P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推理合理的是(  )
A.若y=f(x)是减函数,则f′(x)<0
B.若△ABC为锐角三角形,则sinA+sinB>cosA+cosB
C.因为a>b(a,b∈R),则a+2i>b+2i
D.在平面直角坐标系中,若两直线平行,则它们的斜率相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=2$\sqrt{1-2x}$+$\sqrt{4x+3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a1=1,an+1=pan-n-1(p∈R,n∈N*
(1)当p=1时,求数列{an}的通项公式;
(2)设bn=an-n-2,若数列{bn}为等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,小明、小王分别从A点处和B点处同时出发,小明乘公交沿着AM方向行走,车速为36km/h,小王骑自行车沿着BN方向行走,10min后,两人在公交站C点处相遇.已知,小王此时骑车行程为BC=(3$\sqrt{2}$-$\sqrt{6}$)km,两人出行方向夹角∠ACB=45°,求两人出发前的距离AB为多少km?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\sqrt{(x-1)^{2}+1}$+$\sqrt{(x-4)^{2}+9}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{a+lnx}{x}$在点(1,f(1))处切线与x轴平行.求实数a的值及f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=Asin(ωx+φ)(A>0,0<φ<$\frac{π}{2}$)的图象上一个最低点是(-6,-$\sqrt{2}$),由这个最低点到相邻的最高点的曲线与x轴的交点是(-2,0),求函数解析式.

查看答案和解析>>

同步练习册答案