精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线和曲线的直角坐标方程;

2)若点坐标为,直线与曲线交于两点,且,求实数的值.

【答案】1.2.

【解析】

1)根据参数方程,消参后可得直线直角坐标方程;根据极坐标与直角坐标方程转化关系,即可得曲线的直角坐标方程;

2)将直线参数方程代入曲线的直角坐标方程,并设两点对应参数为,即可由韦达定理及求得的值.

1)直线的参数方程为为参数),

直线直角坐标方程为

,代入即得,

曲线的直角坐标方程为.

2)将代入,化简得

由判别式

两点对应参数为

依题意有,即

代入解得,均满足

所以实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且.

1)证明:.

2)若,试在棱上确定一点,使与平面所成角的正弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,左右顶点分别是,以上的弦异于)为直径作圆恰好过,设直线的斜率为.

1)若,且的面积为,求的方程.

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),曲线为参数),且,点P为曲线的公共点.

1)求动点P的轨迹方程;

2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,十四冬作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用.某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图.则下面叙述正确的是(

A.甲的轮滑指标高于他的雪地足球指标

B.乙的雪地足球指标低于甲的冰尜指标

C.甲的爬犁速降指标高于乙的爬犁速降指标

D.乙的俯卧式爬犁指标低于甲的雪合战指标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是各项均为正数的等差数列,的等比中项,的前项和为.

1)求的通项公式;

2)设数列的通项公式.

i)求数列的前项和

ii)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有__________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图,可用于对研究对象的多维分析)(

A.甲的直观想象素养高于乙

B.甲的数学建模素养优于数据分析素养

C.乙的数学建模素养与数学运算素养一样

D.乙的六大素养整体水平低于甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设无穷数列的每一项均为正数,对于给定的正整数(),若是等比数列,则称数列.

1)求证:若是无穷等比数列,则数列;

2)请你写出一个不是等比数列的数列的通项公式;

3)设数列,且满足,请用数学归纳法证明:是等比数列.

查看答案和解析>>

同步练习册答案