3£®ÔÚ¡÷ABCÖУ¬B£¨-2£¬0£©£¬C£¨2£¬0£©£¬A£¨x£¬y£©£¬¸ø³ö¡÷ABCÂú×ãÌõ¼þ£¬¾ÍÄܵõ½¶¯µãAµÄ¹ì¼£·½³Ì
ϱí¸ø³öÁËһЩÌõ¼þ¼°·½³Ì£º
Ìõ¼þ·½³Ì
¢Ù¡÷ABCÖܳ¤Îª10C1£ºy2=25
¢Ú¡÷ABCÃæ»ýΪ10C2£ºx2+y2=4£¨y¡Ù0£©
¢Û¡÷ABCÖУ¬¡ÏA=90¡ãC3£º$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1£¨y¡Ù0£©
ÔòÂú×ãÌõ¼þ¢Ù£¬¢Ú£¬¢ÛµÄ¹ì¼£·½³ÌÒÀ´ÎΪ£¨¡¡¡¡£©
A£®C3£¬C1£¬C2B£®C1£¬C2£¬C3C£®C3£¬C2£¬C1D£®C1£¬C3£¬C2

·ÖÎö ¢ÙÖпÉת»¯ÎªAµãµ½B¡¢CÁ½µã¾àÀëÖ®ºÍΪ³£Êý£¬·ûºÏÍÖÔ²µÄ¶¨Ò壬ÀûÓö¨Òå·¨Çó¹ì¼£·½³Ì£»¢ÚÖÐÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¿ÉÖªAµãµ½BC¾àÀëΪ³£Êý£¬¹ì¼£ÎªÁ½ÌõÖ±Ïߣ»¢ÛÖСÏA=90¡ã£¬¿ÉÓÃбÂÊ»òÏòÁ¿´¦Àí£®

½â´ð ½â£º¢Ù¡÷ABCµÄÖܳ¤Îª10£¬¼´AB+AC+BC=10£¬
¡ßBC=4£¬¡àAB+AC=6£¾BC£¬
¹Ê¶¯µãAµÄ¹ì¼£ÎªÍÖÔ²£¬ÓëC3¶ÔÓ¦£»
¢Ú¡÷ABCµÄÃæ»ýΪ10£¬¡à$\frac{1}{2}$BC•|y|=10£¬¼´|y|=5£¬ÓëC1¶ÔÓ¦£»
¢Û¡ß¡ÏA=90¡ã£¬¡à$\overrightarrow{AB}•\overrightarrow{AC}$=£¨-2-x£¬-y£©£¨2-x£¬-y£©=x2+y2-4=0£¬ÓëC2¶ÔÓ¦£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±½Ó·¨¡¢¶¨Òå·¨Çó¹ì¼£·½³Ì£¬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÎªÁËÁ˽â¸ßÖÐÉúµÄÉíÌ彡¿µÇé¿ö£¬ÌåÓý¾ÖËæ»ú³éÈ¡ÁËijУ20ÃûѧÉúµÄÌåÓý²âÊԳɼ¨£¬µÃµ½ÈçͼËùʾµÄ¾¥Ò¶Í¼£º
£¨1£©Èô²âÊԳɼ¨²»µÍÓÚ90·Ö£¬Ôò³ÆΪ¡°ÓÅÐã³É¼¨¡±£¬Çó´ÓÕâ20ÈËÖÐËæ»úÑ¡È¡3ÈË£¬ÖÁ¶àÓÐ1ÈËÊÇ¡°ÓÅÐã³É¼¨¡±µÄ¸ÅÂÊ£»
£¨2£©ÒÔÕâ20È˵ÄÑù±¾Êý¾ÝÀ´¹À¼ÆÕû¸öѧУµÄ×ÜÌåÊý¾Ý£¬Èô´Ó¸ÃУ£¨ÈËÊýºÜ¶à£©ÈÎÑ¡3ÈË£¬¼Ç¦Î±íʾ³éµ½¡°ÓÅÐã³É¼¨¡±Ñ§ÉúµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû¡¢·½²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪ʵÊýx¡¢yÂú×ã$\left\{\begin{array}{l}x-y+2¡Ý0\\ x+y¡Ý0\\ 4x-y-1¡Ü0\end{array}\right.$£¬Ôòz=2x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-1B£®$\frac{6}{5}$C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªm£¾1£¬x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y+4¡Ý0\\ mx-y+5-m¡Ü0\\ 0¡Üx¡Ü1\end{array}$£¬ÈôÄ¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄ×î´óֵΪ3£¬Ôò$\frac{1}{a}$+$\frac{2}{b}$£¨¡¡¡¡£©
A£®ÓÐ×îСֵ $\frac{{11+2\sqrt{10}}}{3}$B£®ÓÐ×î´óÖµ$\frac{{11+2\sqrt{10}}}{3}$
C£®ÓÐ×îСֵ$\frac{{11-2\sqrt{10}}}{3}$D£®ÓÐ×î´óÖµ$\frac{{11-2\sqrt{10}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1£¨a£¾$\sqrt{2}$£©µÄÀëÐÄÂÊe=$\frac{{\sqrt{6}}}{3}$£¬ÓÒ½¹µãF£¨c£¬0£©£¬¹ýµãA£¨$\frac{{a}^{2}}{c}$£¬0£©µÄÖ±Ïß½»ÍÖÔ²EÓÚP£¬QÁ½µã£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãP¹ØÓÚxÖáµÄ¶Ô³ÆµãΪM£¬ÇóÖ¤£ºM£¬F£¬QÈýµã¹²Ïߣ»
£¨3£©µ±¡÷FPQÃæ»ý×î´óʱ£¬ÇóÖ±ÏßPQµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¶ÔÕýÕûÊýn£¬ÉèÇúÏßy=£¨2-x£©xnÔÚx=3´¦µÄÇÐÏßÓëyÖá½»µãµÄ×Ý×ø±êΪan£¬ÔòÊýÁÐ$\left\{{\frac{a_n}{n+2}}\right\}$µÄÇ°nÏîºÍµÈÓÚ$\frac{{{3^{n+1}}-3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªa=${¡Ò}_{0}^{1}$xdx£¬b=${¡Ò}_{0}^{1}$x2dx£¬c=${¡Ò}_{0}^{1}$$\sqrt{x}$dx£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®a£¼b£¼cB£®a£¼c£¼bC£®b£¼a£¼cD£®c£¼a£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®µãP£¨0£¬1£©µ½Ë«ÇúÏß$\frac{y^2}{4}-{x^2}=1$½¥½üÏߵľàÀëÊÇ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\frac{{\sqrt{5}}}{5}$C£®$\frac{{2\sqrt{5}}}{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÊýÁÐ{an}Âú×ãan=A•4n+B•n£¬ÆäÖÐA¡¢BÊÇÁ½¸öÈ·¶¨µÄʵÊý£¬B¡Ù0£®
£¨1£©ÈôA=B=1£¬Çó{an}µÄÇ°nÏîÖ®ºÍ£»
£¨2£©Ö¤Ã÷£º{an}²»ÊǵȱÈÊýÁУ»
£¨3£©Èôa1=a2£¬ÊýÁÐ{an}ÖгýÈ¥¿ªÊ¼µÄÁ½ÏîÖ®Í⣬ÊÇ·ñ»¹ÓÐÏàµÈµÄÁ½Ï֤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸