精英家教网 > 高中数学 > 题目详情

【题目】关于的说法,错误的是(

A.展开式中的二项式系数之和为1024

B.展开式中第6项的二项式系数最大

C.展开式中第5项和第7项的二项式系数最大

D.展开式中第6项的系数最小

【答案】C

【解析】

A. 根据二项式系数的性质,二项式系数之和为2n判断.

B. 根据二项式系数的性质,当为偶数时,二项式系数最大的项是中间一项来判断.

C. 根据二项式系数的性质,当为偶数时,二项式系数最大的项是中间一项来判断.

D. 根据二项式系数的性质和二项式系数和系数间的关系判断.

由二项式系数的性质知,二项式系数之和为2101024,故A正确;

为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;

因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的,故D正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销10天,两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.经统计,两个厂家10天的试销情况茎叶图如下:

(Ⅰ)现从厂家试销的10天中抽取两天,求这两天的销售量都大于40的概率;

(Ⅱ)若将频率视作概率,回答以下问题:

(ⅰ)记乙厂家的日返利额为(单位:元),求的分布列和数学期望;

(ⅱ)商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场做出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,且函数在其定义域内为增函数,求实数的取值范围;

(2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面与平面平行的充分条件可以是(

A.内有无穷多条直线都与平行

B.直线,且直线a不在内,也不在

C.直线,直线,且

D.内的任何一条直线都与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有两个不同的实数根,则实数k的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个不同的球,4个不同的盒子,把球全部放入盒子内.

1)共有几种放法?

2)恰有2个盒子不放球,有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;

(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;

(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两条不同的直线,为三个不同的平面,则下列命题正确的是(

A.,则B.,则

C.,则是异面直线D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江夏一中将要举行校园歌手大赛,现有33女参加,需要安排他们的出场顺序.(结果用数字作答

1)如果3个女生都不相邻,那么有多少种不同的出场顺序?

2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?

3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?

查看答案和解析>>

同步练习册答案