精英家教网 > 高中数学 > 题目详情
(2012•赣州模拟)已知椭圆C1
y2
a2
+
x2
b2
=1
(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.若存在点P,使得线段AP的中点与MN的中点的横坐标相等时,求h的取值范围.
分析:(1)由椭圆右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1,建立方程组,即可求出椭圆方程;
(2)不妨设M(x1y1),N(x2y2),P(t,t2+h),求出直线MN的方程代入椭圆C1的方程,根据直线MN与椭圆C1有两个不同的交点,所以有△>0,利用线段AP的中点与MN的中点的横坐标相等,建立方程,从而可得h的取值范围.
解答:解:(1)由题意得
b=1
2•
b2
a
=1
,∴
a=2
b=1
,…(3分)
∴所求的椭圆方程为
y2
4
+x2=1
…(5分)
(2)不妨设M(x1y1),N(x2y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,…(6分)
∴直线MN的方程为y=2tx-t2+h,代入椭圆C1的方程中,得4x2+(2tx-t2+h)2-4=0,
即4(1+t2)x2-4t(t2-h)x+(t2-h)2-4=0,…(7分)
因为直线MN与椭圆C1有两个不同的交点,所以有△=16t2(t2-h)2-16(1+t2)[(t2-h)2-4]>0
即-(t2-h)2+4+4t2>0,…(8分)
设线段MN的中点的横坐标是x3,则x3=
x1+x2
2
=
t(t2-h)
2(1+t2)

设线段PA的中点的横坐标是x4,则x4=
t+1
2

由题意得x3=x4,即有t2+(1+h)t+1=0,显然t≠0
h=-
t2+t+1
t
=-(t+
1
t
+1)
(t≠0)…(9分)
∴t4+2t3-2t2+2t+1<0,即(t2+t+1)2-5t2<0
解得-
(1+
5
)+
2(1+
5
)
2
<t<
-(1+
5
)+
2(1+
5
)
2

-
(1+
5
)+
2(1+
5
)
2
<-1<
-(1+
5
)+
2(1+
5
)
2
<0

h=-
t2+t+1
t
=-(t+
1
t
+1)
(-
(1+
5
)+
2(1+
5
)
2
,-1)
上递增,
(-1,
-(1+
5
)+
2(1+
5
)
2
)
上递减…(11分)
∴当t=-1时,h取到最小值1;…(12分)
t=-
(1+
5
)+
2(1+
5
)
2
t=
-(1+
5
)+
2(1+
5
)
2
时,h的值都为
5

∴h的取值范围是[1,
5
)
…(13分)
点评:本题考查椭圆的标准方程与性质,考查抛物线的切线,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•赣州模拟)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为
π+1
π+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•赣州模拟)复数(
2
+ai)i(a∈R)
的实部与虚部互为相反数,则a的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•赣州模拟)某人进行驾驶理论测试,每做完一道题,计算机会自动显示已做题的正确率f(n),则下列关系中不可能成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•赣州模拟)函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f'(x)=0的两根为x1,x2,则|x1-x2|的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•赣州模拟)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当
AC
+
CB
=2
AM
时,直线l的一般式方程为
x+y-3=0
x+y-3=0

查看答案和解析>>

同步练习册答案