精英家教网 > 高中数学 > 题目详情

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在160cm184cm之间,将测量结果按如下方式分成六组:第1,第2...,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

【答案】10.12;(2

【解析】

1)由直方图可得,被选取的男生恰好在第5组或第6组的概率.

2)先求出第5组有4人,第6组有2,分别编号后利用列举法知,从第5与第6组男生中选取两名同学担任守门员共有15种情况,其中选取的两人中最多有,1名男生来自第5组的情况有9种,由古典概型概率公式可得结果.

1)被选取的男生恰好在第5组或第6组的概率.

2)第5组有(人),记为abcd,同理第6组有2(人)记为AB,所有的情况为,共15种,选取的两人中最多有1名男生来自第5组的有9种,所以所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)

)根据频率直方图估算型节能灯的平均使用寿命;

)根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;

)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解共享单车的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率分布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值;

2)求这50名问卷评分数据的中位数;

3)估计样本的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足时按计算)需再收元.公司从承揽过的包裹中,随机抽取件,其重量统计如下:

公司又随机抽取了天的揽件数,得到频数分布表如下:

以记录的天的揽件数的频率作为各揽件数发生的概率

计算该公司天中恰有天揽件数在的概率;

估计该公司对每件包裹收取的快递费的平均值;

公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员人,每人每天揽件不超过件,每人每天工资元,公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?(同一组中的揽件数以这组数据所在区间中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

分组

频数

频率

12

4

合计

根据上面图表,求处的数值

在所给的坐标系中画出的频率分布直方图;

根据题中信息估计总体平均数,并估计总体落在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

,则的逆否命题为真命题

函数在区间上为增函数的充分不必要条件

③若为假命题,则均为假命题

④对于命题,则为:

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育部门为了了解某地区高中学生校外补课的情况,随机抽取了该地区100名学生进行调查,其中女生50人,将周补课时间不低于4小时的学生称为“补课迷”.已知“补课迷”中有10名女生,右边是根据调查样本结果绘制的学生校外周补课时间的频率分布直方图(时间单位为:小时).

(1)根据调查样本的结果估计该地区高中学生每周课外补课的平均时间(说明:同一组中的数据用该组区间的中间值作代表);

(2)根据已知条件完成下面的列联表,根据调查资料你是否有的把握认为“补课迷”与性别有关?

非补课迷

补课迷

合计

合计

(3)将周补课时间不低于8小时者称为“超级补课迷”,已知调查样本中,有2名“超级补课迷”是女生,若从“超级补课迷”中任意选取3人,求至多有1名女学生的概率.

附:.

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为

(1)求椭圆的方程;

(2)设点为椭圆的上顶点,若直线与椭圆交于两点不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;

(3)在(2)的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

同步练习册答案