精英家教网 > 高中数学 > 题目详情
18.已知tanα,tanβ是方程6x2-5x+1=0两个根且0<α<$\frac{π}{2}$,π<β<$\frac{3π}{2}$,则α+β的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

分析 先利用韦达定理,求出tanα+tanβ和tanα•tanβ的值,利用正切的两角和公式求出tan(α+β)的值,根据角的范围可求.

解答 解:由题意,tanα+tanβ=$\frac{5}{6}$,tanα•tanβ=-$\frac{1}{6}$,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1,
∵0<α<$\frac{π}{2}$,π<β<$\frac{3π}{2}$,可得:α+β∈(π,2π),
∴α+β=$\frac{5π}{4}$
故选:C.

点评 本题的考点是一元二次方程的根的分布与系数的关系,主要考查一元二次方程的根与系数的关系,考查正切的两角和公式及特殊角的三角函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a4=1,S6=15,求公差d和a1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,其中a1+a5=0,a11=16.
(I)在各项均为正的等比数列{bn}中,b1=2且b${\;}_{{a}_{5}}$=4b${\;}_{{a}_{4}}$,求bn
(Ⅱ)若cn=$\frac{1}{{S}_{n}+6n}$,求c1+c2+c3+…+c20的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A(-1,0),B(3,0),圆C以AB为直径.
(1)求圆C的方程;
(2)求直线l:3x+4y-8=0被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将长为$\sqrt{3}$、宽为1的矩形绕着它的一条对角线旋转一周所得到的几何体的体积为$\frac{7π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A(0,1)的直线l,斜率为k,与圆C:(x-2)2+(y-3)2=1相交于M、N两个不同点.
(Ⅰ)求实数k取值范围;
(Ⅱ)若$\overrightarrow{OM}•\overrightarrow{ON}=12$,其中O为坐标原点,求|MN|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l垂直于直线y=x+1,原点O到l的距离为1,且l与y轴正半轴有交点,则直线l的方程是(  )
A.x+y-$\sqrt{2}$=0B.x+y+1=0C.x+y-1=0D.x+y+$\sqrt{2}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a∈R,则1+a+a2+…+an的值为(  )
A.$\frac{1-{a}^{n}}{1-a}$B.$\frac{1-{a}^{n+1}}{1-a}$C.$\frac{1-{a}^{n+1}}{1-a}$或n+1D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,如果输入的x,t均为2,则输出的M等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案