精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同侧,M为EA的中点,CE=CA=2BD,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA.
分析:(1)取AC中点N,连接MN、BN,欲证DE=DA,根据三角形的中线又是高的三角形是等腰三角形,而M为AE中点,只需证明DM⊥AE即可;
(2)欲证平面BDM⊥平面AEC,根据面面垂直的判定定理可知在平面BDM内一直线与平面AEC垂直,而根据题意可得DM⊥平面AEC.
解答:证明:(1)取AC中点N,连接MN、BN,∵△ABC是正三角形,∴BN⊥AC,
∵EC⊥平面ABC,BD⊥平面ABC,∴EC∥BD,EC⊥BN,
又∵M为AE中点,EC=2BD,∴MN
.
.
BD,∴BN
.
.
DM,
∴四边形MNBD是平行四边形,
由BN⊥AC,BN⊥EC,得BN⊥平面AEC,∴DM⊥平面AEC,
∴DM⊥AE,∴AD=DE.
(2)∵DM⊥平面AEC,DM?平面BDM,
∴平面BDM⊥平面AEC.
点评:本小题主要考查平面与平面垂直的判定,以及等腰三角形的判定等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同侧,M为EA的中点,CE=CA=2BD,
求证:(1)DE=DA;
(2)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:7 立体几何 质量检测(1)(解析版) 题型:选择题

如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )

A.PA=PB>PC
B.PA=PB<PC
C.PA=PB=PC
D.PA≠PB≠PC

查看答案和解析>>

同步练习册答案