精英家教网 > 高中数学 > 题目详情

(14分)已知圆M过定点,圆心M在二次曲线上运动(1)若圆M与y轴相切,求圆M方程;(2) 已知圆M的圆心M在第一象限, 半径为,动点是圆M外一点,过点与圆M相切的切线的长为3,求动点的轨迹方程;(3)若圆M与x轴交于A,B两点,设,求的取值范围?

解:(1)可知圆心M,半径
则圆M方程为: ………………………………………………4分
(2)       设圆心
解得,所以圆M的方程为:
设QP于圆M相切,切点为P,则
所以动点Q的轨迹方程是 ……………………………………….9分
(3)设圆心M,可知圆M方程为:
取y=0得,不妨取
    
,则,故所求的取值范围为…………………..14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知关于的方程:.
(1)当为何值时,方程C表示圆。
(2)若圆C与直线相交于M,N两点,且|MN|=,求的值。
(3)在(2)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率;
(2)若过三点的圆恰好与直线相切,求椭圆
方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于
点,在轴上是否存在点使得以为邻边的平行四边形是菱形,
如果存在,求出的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1为参数),曲线C2(t为参数).
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线.写出的参数方程.公共点的个数和C公共点的个数是否相同?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
过点作圆C的切线,切点为D,且QD=4
(1)求的值
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且lx轴于点A,交轴于点B,设,求的最小值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x
-4)2+(y-5)2=4.
(1)若点M∈⊙ C1,  点N∈⊙C2,求|MN|的取值范围;
(2)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程;
(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知椭圆C:的离心率为.双曲线的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(   )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分14分)
已知点,点是⊙上任意两个不同的点,且满足,设为弦的中点.

(1)求点的轨迹的方程;
(2)试探究在轨迹上是否存在这样的点:它到直线的距离恰好等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案