精英家教网 > 高中数学 > 题目详情
设p:方程x2+mx+4=0有两个不相等的实根;q:曲线:
x2
4
+
y2
m-1
=1表示的是焦点在x轴上的椭圆.若“p或q”是假命题,求实数m的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:先求出p,q为真命题时的m的范围,再根据复合命题得到p,q为假命题,问题得以解决
解答: 解,若p真,则△=m2-16>0,解得:m<-4或m>4…..(3分)
若q真,则0<m-1<4,解得1<m<5….(6分)
因为p或q为假,所以p假,q假.即
-4≤m≤4
m≤1或m≥5
….(10分)
解得:-4≤m≤1.(12分)
点评:本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若一个菱形的两条对角线分别在直线l1:直线(a+1)x+y-a=0和直线l2:ax+2(a+1)y+1=0上,则对角线的交点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,我国许多城市雾霾现象频发,PM2.5(即环境空气中空气动力学当量直径小于或等于2.5微米的颗粒物)是衡量空气质量的一项指标.据相关规定,PM2.5日均浓度值不超过35微克/立方米空气质量为优,在35微克/立方米至75微克/立方米之间的空气质量为良,某市环保局随机抽取了一居民区今年上半年中30天的PM2.5日均浓度监测数据,数据统计如下:
组别PM2.5日均浓度(微克/立方米)频数(天)
第一组(15,35]3
第二组(35,55]9
第三组(55,75]12
第四组(75,95]6
(1)估计该样本的中位数和平均数;
(2)将频率视为概率,用样本估计总体,对于今年上半年中的某3天,记这3天中该居民区空气质量为优或良的天数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D同时满足下列条件:①f(x)在[m,n]是单调的;②当定义域为[m,n]时,f(x)的值域也是[m,n],则称区间[m,n]是该函数的“H区间”.若函数f(x)=
alnx-x(x>0)
-x
-a(x≤0)
存在“H区间”,则正数a的取值范围是(  )
A、(
1
4
,1]∪(2e,e2]
B、(
3
4
,1]∪(2e,e2]
C、(
1
4
,3]∪(e,e2]
D、(
3
4
,2]∪(e,e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在区间(-3,4)内为增函数,则(  )
A、f(-1)>f(1)
B、f(-1)=f(1)
C、f(-1)<f(1)
D、以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点P(ρ0,θ0)(ρ0≠0)关于极点的对称点的坐标是(  )
A、(-ρ0,θ0
B、(ρ0,-θ0
C、(-ρ0,-θ0
D、(-ρ0,π+θ0

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=1关于直线y=x+b对称,则实数b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(π+α)=-
10
5
,且α∈(-
π
2
,0),则tan(
3
2
π+α
)的值为
 

查看答案和解析>>

同步练习册答案