下列说法:
①当x>0且x≠1时,有lnx+≥2;
②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;
③若对x∈R,有f(x-1)=-f(x),则f(x)的周期为2;
④“若x2+x-6≥0,x≥2”的逆否命题为真命题;
⑤函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称.
其中正确的命题的序号________.
科目:高中数学 来源: 题型:
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:重庆市万州二中2011-2012学年高一上学期期中考试数学试题(人教版) 题型:022
下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;②f(x)=+既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x·y)=x·f(y)+y·f(x),则f(x)是奇函数.
其中所有正确说法的序号是________.
查看答案和解析>>
科目:高中数学 来源:0103 期中题 题型:填空题
下列说法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(xy)=xf(y)+yf(x),则f(x)是奇函数;
其中所有正确说法的序号是( )。
查看答案和解析>>
科目:高中数学 来源:0119 期中题 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com