精英家教网 > 高中数学 > 题目详情

已知数列数学公式为等差数列,且a1=5,a3=29.
(1)求数列{an}的通项公式;
(2)对任意n∈N*数学公式恒成立的实数m是否存在最小值?如果存在,求出m的最小值;如果不存在,说明理由.

解:(1)设等差数列{log3(an-2)}的公差为d.
由a1=5,a3=29得log327=log33+2d,即d=1.
所以log2(an-2)=1+(n-1)×1=n,即an=2n+2.
(2)证明:因为==
所以++…+=+++…+==1-
恒成立,
即1-<m,由于1-<1,
∴m≥1.
故存在m的最小值1,使得对任意n∈N*恒成立.
分析:(1)设等差数列{log3(an-2)}的公差为d.根据a1和a3的值求得d,进而根据等差数列的通项公式求得数列{log3(an-2)}的通项公式,进而求得an
(2)把(1)中求得的an代入++…+中,进而根据等比数列的求和公式求得++…+=1-,即可得出答案.
点评:本题考查等差、等比数列的性质与存在性问题,注意与对数函数或指数函数的结合运用时,往往同时涉及等比、等差数列的性质,是一个难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

.已知数列为等差数列且,则

的值为(  )

A.    B.±    C.-    D.-

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三上学期期中考试理科数学 题型:解答题

(13分)已知数列为等差数列,且

(1)求数列的通项公式;  

(2)对任意,恒成立的实数m是否存在最小值?如果存在,求出m的最小值;如果不存在,说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年本溪县高二暑期补课阶段考试数学卷 题型:选择题

已知数列为等差数列,若且它们的前项和有最大值,则使得的最大值为(      )

A.11          B.19             C.20            D.21

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年黑龙江省高一下学期期中考试数学 题型:选择题

已知数列为等差数列,若,且它们的前项和有最大值,则使得的最大值为 (    )

A.11          B.19             C.20                 D.21

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北省高二下学期期末考试理科数学 题型:解答题

(本题满分12分)已知数列为等差数列,,数列的前项和为,且有

(1)求的通项公式;

(2)若的前项和为,求.

 

查看答案和解析>>

同步练习册答案