精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.若f(a)=2,求a的值.

分析 利用函数的解析式,列出方程求解即可.

解答 解:函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.若f(a)=2,
可得$\frac{{2}^{a}+1}{{2}^{a}-1}$=2,
可得2a=3,解得a=log23.

点评 本题考查函数的解析式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求值:log${\;}_{\frac{1}{2}}$16+3${\;}^{3+lo{g}_{3}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$在同一平面内,且$\overrightarrow a$=(-1,2).
(1)若$\overrightarrow c$=(m-1,3m),且$\overrightarrow c$∥$\overrightarrow a$,求m的值;
(2)若|$\overrightarrow b$|=$\sqrt{5}$,且($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=log${\;}_{\frac{1}{2}}$sin(2πx+$\frac{π}{4}$)的单调递减区间是(k-$\frac{1}{8}$,k+$\frac{1}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求数列{cn}的前2n项和P2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.log${\;}_{\sqrt{2}}$27×log${\;}_{\frac{1}{3}}$8=(  )
A.12B.18C.-18D.-$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(-2,4).
(1)求证:△ABC是直角三角形;
(2)若△ABC的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线的一个焦点坐标为(0,2),且过点(1,$\sqrt{3}$),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.无穷数列{an}满足${a_i}∈{N^*}$,且${a_i}≤{a_{i+1}}(i∈{N^*})$,对于数列{an},记${b_k}=min\left\{{n|{a_n}≥k}\right\}(k∈{N^*})$,其中min{n|an≥k}表示集合{n|an≥k}中的最小数
(1)若数列{an}:1,3,5,7,…,请写出${b_1},{b_2},{b_{a_2}}$;
(2)已知Tn=${a_1}+{a_2}+…+{a_n}+{b_1}+{b_2}+…+{b_{a_n}},求证{T_n}=(n+1){a_n}$.

查看答案和解析>>

同步练习册答案