【题目】已知椭圆: 的一个焦点与的焦点重合,点在椭圆上.
(1)求椭圆的方程;
(2)设直线: ()与椭圆交于两点,且以为对角线的菱形的一顶点为,求面积的最大值(为坐标原点).
科目:高中数学 来源: 题型:
【题目】我市某机构为调查2017年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,图1是此次调查中某一项的流程图,其输出的结果是6400,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是( )
图1
A. 0.64 B. 0.36 C. 6400 D. 3600
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程
在直角坐标系中,圆,曲线的参数方程为为参数),并以为极点, 轴正半轴为极轴建立极坐标系.
(1)写出的极坐标方程,并将化为普通方程;
(2)若直线的极坐标方程为与相交于两点,
求的面积(为圆的圆心).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABC为一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,为了重建草坪,设计师准备了两套方案:
方案一:扩大为一个直角三角形,其中斜边DE过点B,且与AC平行,DF过点A,EF过点C;
方案二:扩大为一个等边三角形,其中DE过点B,DF过点A,EF过点C.
(1)求方案一中三角形DEF面积S1的最小值;
(2)求方案二中三角形DEF面积S2的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),若椭圆上的一动点到右焦点的最短距离为,且右焦点到直线的距离等于短半轴的长,已知,过的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com