精英家教网 > 高中数学 > 题目详情

【题目】如图1,在中,DE分别为的中点,点F为线段上的一点,将沿折起到的位置,使,如图2.

(1)求二面角

(2)线段上是否存在点,使平面?说明理由.

【答案】(1)90(2)存在,见解析

【解析】

(1)利用翻折前后变量与不变量的关系,证明翻折后平面平面BCDE,即得二面角.

(2)的中点P,的中点Q,证明P,Q,E,D共面,再由已知条件证明平面PQED,即得Q即为所求的点,即存在满足要求的点.

1)如图所示:

翻折前:

D,E分别为AC,AB的中点,

∴DEBC, ∵

∴DEAC;

翻折后:

DE, DE,

∴DE平面,因为DEBCD

∴平面BCDE平面

∴二面角是直角,等于90.

2)线段上存在点Q,使平面.理由如下:

如图所示,

分别取,的中点P,Q,则.

,

,

P,Q,E,D四点共面,即为平面PQED,

由(1)知平面,

,

又∵P是等腰三角形底边的中点,

,∵,

平面PQED,从而平面,故线段上存在点Q,使平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面

1)求证:平面平面

2)若点中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.

1)若,分别写出数列和数列的通项公式;

2)若是奇函数,且,求

3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与直线的距离为,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)在(1)的条件下,抛物线的焦点与点关于轴上某点对称,且抛物线与椭圆在第四象限交于点,过点作抛物线的切线,求该切线方程并求该直线与两坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形面积为为三角形三边长,为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )

A.

B.

C. 为四面体的高)

D. (其中分别为四面体四个面的面积,为四面体内切球的半径,设四面体的内切球的球心为,则球心到四个面的距离都是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近五年的产量统计如下表:

(Ⅰ)根据表中数据,建立关于的线性回归方程,并由所建立的回归方程预测该地区2018年该农产品的产量;

(Ⅱ)若近五年该农产品每千克的价格(单位:元)与年产量(单位:万吨)满足的函数关系式为,且每年该农产品都能售完.求年销售额最大时相应的年份代码的值,

附:对于一组数据,其回归直线的斜率和截距的计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中:

定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)R上是增函数;f(2)=f(-2),则函数f(x)不是奇函数;函数y=x-0.5(0,1)上的减函数;对应法则和值域相同的函数的定义域也相同;x0是二次函数y=f(x)的零点,m<x0<n,那么f(m)f(n)<0一定成立.

写出上述所有正确结论的序号:_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线和曲线交于两点之间),且,求实数的值.

查看答案和解析>>

同步练习册答案