精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足a1=1,对任意nN*都有an+1=an+n+1,则=(    )

A.B.C.D.

【答案】B

【解析】

由题意可得n≥2时,an-an-1=n,再由数列的恒等式:an=a1+a2-a1+a3-a2+…+an-an-1),运用等差数列的求和公式,可得an,求得==2-),由数列的裂项相消求和,化简计算可得所求和.

解:数列{an}满足a1=1,对任意nN*都有an+1=an+n+1

即有n≥2时,an-an-1=n

可得an=a1+a2-a1+a3-a2+…+an-an-1

=1+2+3+…+n=nn+1),也满足上式

==2-),

=21-+-+…+-

=21-=

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】棋盘上标有第012100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站(胜利大本营)或第100站(失败集中营)是,游戏结束.设棋子跳到第n站的概率为.

1)求的值;

2)证明:

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是否存在,使得,按照某种顺序成等差数列?若存在,请确定的个数;若不存在,请说明理由;

求实数与正整数,使得内恰有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点向圆引两条切线,切点为,若点的坐标为,则直线的方程为____________;若为直线上一动点,则直线经过定点__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有员工1000名,平均每人每年创造利润10万元.为增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后平均每人每年创造利润为万元,剩下的员工平均每人每年创造的利润可以提高

(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?

(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=60,且an+1=an+3,则这个数列的前40项的绝对值之和为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上动点与两个定点 ,且.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中轨迹为,过点的直线所截得的线段长度为8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知互不重合的直线,互不重合的平面,给出下列四个命题,正确命题的个数是

,则

,则

,则//

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案