精英家教网 > 高中数学 > 题目详情
(1)已知M={(x,y)|y=x+a},N={(x,y)|x2+y2=2}求使等式M∩N=∅成立的实数a的范围.
(2)设A={-3,4},B={x|x2-2ax+b=0},B≠Φ且A∩B=B,求a,b的值.
分析:(1)由M∩N=Φ可得y=x+a与x2+y2=2没有交点,结合二次方程根的个数相应条件可求m
(2)由A∩B=B,A={-3,4},B≠Φ,B⊆A可得B={-3}或B={4}或B={-3,4},需要考虑方程的根与系数关系即可求解a,b
解答:解:(1)∵M={(x,y)|y=x+a},N={(x,y)|x2+y2=2}
又∵M∩N=Φ
∴y=x+a与x2+y2=2没有交点
即2x2+2ax+a2-2=0没有解
∴△=4a2-8(a2-2)<0
∴a>2或a<-2
(2)∵A∩B=B,A={-3,4},B≠Φ
∴B⊆A
∴B={-3}或B={4}或B={-3,4}
①当B={-3}时,则方程x2-2ax+b=0只有一个根-3
-6=2a
9=b

∴a=-3,b=9
②当B={4}时,则方程x2-2ax+b=0只有一个根4
2a=8
b=16

∴a=4,b=16
③当B={-3,4}时,则方程x2-2ax+b=0有两个根-3,4
1=2a
-12=b

∴a=
1
2
,b=-12
点评:本题主要考查了方程与函数的思想的应用,集合的包含关系的应用,要注意方程的根与系数关系在(2)中的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知M=
3-2
2-2
,a=[4-1],试计算:M10α.
(2)已知圆C的参数方程为
x=
3
+2cosθ
y=2sinθ
(θ为参数),若P是圆C与y轴正半轴的交点,以原点为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=|x+7|,g(x)=m-|x-2|,若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.
(2)已知a>0,b>0,c>0,a+b+c=9,且2|x-1|+|x|≥
3abc
对任意的a,b,c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=log2|3x-m|的图象关于直线x=
1
2
对称,则m=
3
2

③关于x的方程ax2-2x+1=0有且仅有一个实数根,则实数a=1;
④已知命题p:?x∈R,都有sinx≤1,则¬p是:?x∈R,使得sinx>1.
其中真命题的序号是_
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海)定义域为R,且对任意实数x1,x2都满足不等式f(
x1+x2
2
)≤
f(x1)+f(x2)
2
的所有函数f(x)组成的集合记为M,例如,函数f(x)=kx+b∈M.
(1)已知函数f(x)=
x,x≥0
1
2
x,x<0
,证明:f(x)∈M;
(2)写出一个函数f(x),使得f(x0)∉M,并说明理由;
(3)写出一个函数f(x)∈M,使得数列极限
lim
n→∞
f(n)
n2
=1,
lim
n→∞
f(-n)
-n
=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�