精英家教网 > 高中数学 > 题目详情
14.设f(x)=sinxcosx+sin2x-$\frac{1}{2}$.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)把y=f(x)的图象向左平移$\frac{π}{24}$个单位,得到函数y=g(x)的图象,求y=g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (Ⅰ)利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的单调性,求得f(x)的单调递减区间.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得y=g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

解答 解:(Ⅰ)∵f(x)=sinxcosx+sin2x-$\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1-cos2x}{2}$-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
可得f(x)的单调递减区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
(Ⅱ)把y=f(x)的图象向左平移$\frac{π}{24}$个单位,得到函数y=g(x)=$\frac{\sqrt{2}}{2}$sin[2(x+$\frac{π}{24}$)-$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{6}$)的图象,
在区间[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],故当2x-$\frac{π}{6}$=-$\frac{π}{6}$ 时,函数g(x)取得最小值为-$\frac{\sqrt{2}}{4}$,
当2x-$\frac{π}{6}$=$\frac{π}{2}$ 时,函数g(x)取得最大值为$\frac{\sqrt{2}}{2}$.

点评 本题主要考查三角函数的恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知三个数a=0.32,b=log20.3,c=20.3,则a,b,c之间的大小关系是(  )
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.A是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,O为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,则“a+b≥4”是“a≥2且b≥2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-$\sqrt{2}$=0被圆M截得线段的长度为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分条件
C.“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要得到y=sin$\frac{x}{2}$的图象,只需将y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象上的所有点(  )
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆的短轴长为6,焦距为8,则它的长轴长等于10.

查看答案和解析>>

同步练习册答案