精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数满足 ,则( )

A. 1 B. C. 2 D.

【答案】B

【解析】

根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可得出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-mf(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.

∵f(x)是定义在R上的奇函数,且f(x+1)=f(1-x);
∴f(x+2)=f(-x)=-f(x);
∴f(x+4)=f(x);
∴f(x)的周期为4;
∵x∈[0,1]时,f(x)=2x-m;
∴f(0)=1-m=0;
∴m=1;
∴x∈[0,1]时,f(x)=2x-1;
∴f(2019)=f(-1+505×4)=f(-1)=-f(1)=-1.
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好体育,得到表:

参照附表,得到的正确结论是  

附:由公式算得:

附表:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

1.323

2.702

2.706

3.841

5.024

6.635

7.879

A. 以上的把握认为“爱好体育运动与性别有关”

B. 以上的把握认为“爱好体育运动与性别无关”

C. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别有关”

D. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求AM与平面A1MD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设函数,若函数上恰有两个不同的零点,则的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当的极值;

(2)若函数在[1,3]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在高二下学期开设四门数学选修课,分别为《数学史选讲》.《球面上的几何》.《对称与群》.《矩阵与变换》.现有甲.乙.丙.丁四位同学从这四门选修课程中选修一门,且这四位同学选修的课程互不相同,下面关于他们选课的一些信息:①甲同学和丙同学均不选《球面上的几何》,也不选《对称与群》:②乙同学不选《对称与群》,也不选《数学史选讲》:③如果甲同学不选《数学史选讲》,那么丁同学就不选《对称与群》.若这些信息都是正确的,则丙同学选修的课程是(  )

A. 《数学史选讲》B. 《球面上的几何》C. 《对称与群》D. 《矩阵与变换》

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标平面内,每个点绕原点按逆时针方向旋转的变换所对应的矩阵为,每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为.

(I)求矩阵的逆矩阵

(Ⅱ)求曲线先在变换作用下,然后在变换作用下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价

9

9.2

9.4

9.6

9.8

10

销量

100

94

93

90

85

78

(1)若销量与单价服从线性相关关系,求该回归方程;

(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。

附:对于一组数据,……

其回归直线的斜率的最小二乘估计值为

本题参考数值:

查看答案和解析>>

同步练习册答案