精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

【答案】(Ⅰ) .(Ⅱ)答案见解析;(Ⅲ)证明见解析.

【解析】试题分析:(Ⅰ)求出函数的导数,问题转化为存在大于0的实数根,根据时递增,求出的范围即可;(Ⅱ)求出函数的导数,通过讨论的范围,判断导函数的符号,求出函数的单调区间即可;(Ⅲ)求出函数的导数,根据,得到存在满足,从而得到函数的单调区间,求出函数的极小值,证出结论即可.

试题解析:I)由.

由已知曲线存在斜率为-1的切线,所以存在大于零的实数根,

存在大于零的实数根,因为时单调递增,

所以实数a的取值范围.

II)由可得

时, ,所以函数的增区间为

时,若 ,若

所以此时函数的增区间为,减区间为.

III)由及题设得

可得,由(II)可知函数上递增,

所以,取,显然

所以存在满足,即存在满足所以 在区间(1+∞)上的情况如下:

0 +

极小

所以当-1<a<0时,gx)在(1+∞)上存在极小值.

(本题所取的特殊值不唯一,注意到),因此只需要即可)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若函数恰有一个零点,求实数的取值范围;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);

求用户用水费用(元)关于月用水量(吨)的函数关系式;

Ⅲ)如图2是该县居民李某20171~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某20171~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)判断函数在区间上的单调性;

(Ⅱ)若函数在区间上满足恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长是短轴长的2倍,且过点

⑴求椭圆的方程

⑵若在椭圆上有相异的两点三点不共线),为坐标原点且直线直线直线的斜率满足.

(ⅰ)求证: 是定值

(ⅱ)设的面积为取得最大值时求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcos(x-).

(Ⅰ)求函数f(x)的最小正周期.

(Ⅱ)当x∈[0, ]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是矩形, 平面 是等腰三角形, 的一个三等分点(靠近点),的延长线交于点,连接.

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

① “若,则有实根”的逆否命题为真命题;

②命题“”为真命题的一个充分不必要条件是

③命题“,使得”的否定是真命题;

④命题函数为偶函数,命题函数上为增函数,

为真命题.

其中,正确的命题是( )

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

同步练习册答案