精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,x)若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.0C.4D.1

分析 利用向量共线定理即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow{b}$=(3,2+x),$\overrightarrow{a}$-$\overrightarrow{b}$=(-1,2-x),
∵$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,
则-(2+x)-3(2-x)=0,
解得x=4.
故选:C.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输入a=-1,b=-3,则输出的a的值为(  )
A.27B.8C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)已知函数f(x)对任意的x,y∈R均有f(x+y)=f(x)•f(y),$f(1)=\frac{1}{2}$.bn=an•f(n),n∈N*,求f(n)的表达式并证明:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有(  )种.
A.336B.408C.240D.264

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A是抛物线$y=\frac{1}{4}{x^2}$的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上,且满足|PF|=m|PA|,当M取得最小值时,点P恰好在以A,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$,若动点P满足$\overrightarrow{AP}$=2$λ\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P的轨迹与直线AB,AC所围成的封闭区域的面积为(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直三棱柱ABC-A1B1C1的三视图如图所示.

(1)求三棱柱ABC-A1B1C1的体积;
(2)若点D为棱AB的中点,求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设全集U=R,$A=\left\{x|\frac{x}{x-2}<0\right\},B=\left\{x|\left|x+1\right|<2\right\}$,则如图中阴影部分表示的集合为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)(x∈R)是奇函数且当x∈(0,+∞)时是减函数,若f(1)=0,则函数y=f(x2-2x)的零点共有(  )
A.4个B.6个C.3个D.5个

查看答案和解析>>

同步练习册答案